Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans

In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-01, Vol.134 (3), p.1817-1824
Hauptverfasser: von Reuss, Stephan H, Bose, Neelanjan, Srinivasan, Jagan, Yim, Joshua J, Judkins, Joshua C, Sternberg, Paul W, Schroeder, Frank C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1824
container_issue 3
container_start_page 1817
container_title Journal of the American Chemical Society
container_volume 134
creator von Reuss, Stephan H
Bose, Neelanjan
Srinivasan, Jagan
Yim, Joshua J
Judkins, Joshua C
Sternberg, Paul W
Schroeder, Frank C
description In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.
doi_str_mv 10.1021/ja210202y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431959847</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rh68A9ILqKCveazu3MR1sEvmEFw9Ryq0zVjhnRnTLoH9t-bYdZBQTwVVXl4qNRLyFPOrjgT_M0ORKlM3N4jC64FqzQX9X2yYIyJqmlreUEe5bwrrRItf0guhBDSaNUuyLyMwx4STP6AdI0TdDHEwbtMv-IBIWT6zsctjph9pnFDr7ODFLPvMb-mQNexnwMkuvJdgnR7JG4GCKFax4BuDkhv_HY8avxIl1cUA25hzI_Jg00Z4pO7ekm-f3j_bfmpWn35-Hl5vapAyWaqhJFCN7pnWINslTZN1yijai022BnUrahlx0D3HW9VbxzTXMneNa41rtMM5CV5e_Lu527A3uE4JQh2n_xQtrURvP37ZfQ_7DYerBS14VIVwYs7QYo_Z8yTHXx2GAKMGOdsDW9103AjC_nyv6RQkhttWtUU9NUJdeWSOeHmvBBn9hioPQda2Gd__uBM_k6wAM9PALhsd3FOx2v_Q_QLrqKnxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431959847</pqid></control><display><type>article</type><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</creator><creatorcontrib>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</creatorcontrib><description>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja210202y</identifier><identifier>PMID: 22239548</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>amino acid metabolism ; Animals ; beta oxidation ; bioactive properties ; biochemical pathways ; biogenesis ; biosynthesis ; Caenorhabditis elegans ; Caenorhabditis elegans - chemistry ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; carbohydrate metabolism ; enzymes ; excretion ; fatty acids ; Glycolipids - chemistry ; Glycolipids - genetics ; Glycolipids - metabolism ; homeostasis ; metabolome ; metabolomics ; Metabolomics - methods ; mutants ; Mutation ; nutritional status ; Oxidation-Reduction ; Peroxisomes - chemistry ; Peroxisomes - genetics ; Peroxisomes - metabolism ; Signal Transduction ; Tandem Mass Spectrometry</subject><ispartof>Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1817-1824</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</citedby><cites>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja210202y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja210202y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22239548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Reuss, Stephan H</creatorcontrib><creatorcontrib>Bose, Neelanjan</creatorcontrib><creatorcontrib>Srinivasan, Jagan</creatorcontrib><creatorcontrib>Yim, Joshua J</creatorcontrib><creatorcontrib>Judkins, Joshua C</creatorcontrib><creatorcontrib>Sternberg, Paul W</creatorcontrib><creatorcontrib>Schroeder, Frank C</creatorcontrib><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</description><subject>amino acid metabolism</subject><subject>Animals</subject><subject>beta oxidation</subject><subject>bioactive properties</subject><subject>biochemical pathways</subject><subject>biogenesis</subject><subject>biosynthesis</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>carbohydrate metabolism</subject><subject>enzymes</subject><subject>excretion</subject><subject>fatty acids</subject><subject>Glycolipids - chemistry</subject><subject>Glycolipids - genetics</subject><subject>Glycolipids - metabolism</subject><subject>homeostasis</subject><subject>metabolome</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>mutants</subject><subject>Mutation</subject><subject>nutritional status</subject><subject>Oxidation-Reduction</subject><subject>Peroxisomes - chemistry</subject><subject>Peroxisomes - genetics</subject><subject>Peroxisomes - metabolism</subject><subject>Signal Transduction</subject><subject>Tandem Mass Spectrometry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rh68A9ILqKCveazu3MR1sEvmEFw9Ryq0zVjhnRnTLoH9t-bYdZBQTwVVXl4qNRLyFPOrjgT_M0ORKlM3N4jC64FqzQX9X2yYIyJqmlreUEe5bwrrRItf0guhBDSaNUuyLyMwx4STP6AdI0TdDHEwbtMv-IBIWT6zsctjph9pnFDr7ODFLPvMb-mQNexnwMkuvJdgnR7JG4GCKFax4BuDkhv_HY8avxIl1cUA25hzI_Jg00Z4pO7ekm-f3j_bfmpWn35-Hl5vapAyWaqhJFCN7pnWINslTZN1yijai022BnUrahlx0D3HW9VbxzTXMneNa41rtMM5CV5e_Lu527A3uE4JQh2n_xQtrURvP37ZfQ_7DYerBS14VIVwYs7QYo_Z8yTHXx2GAKMGOdsDW9103AjC_nyv6RQkhttWtUU9NUJdeWSOeHmvBBn9hioPQda2Gd__uBM_k6wAM9PALhsd3FOx2v_Q_QLrqKnxQ</recordid><startdate>20120125</startdate><enddate>20120125</enddate><creator>von Reuss, Stephan H</creator><creator>Bose, Neelanjan</creator><creator>Srinivasan, Jagan</creator><creator>Yim, Joshua J</creator><creator>Judkins, Joshua C</creator><creator>Sternberg, Paul W</creator><creator>Schroeder, Frank C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120125</creationdate><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><author>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>amino acid metabolism</topic><topic>Animals</topic><topic>beta oxidation</topic><topic>bioactive properties</topic><topic>biochemical pathways</topic><topic>biogenesis</topic><topic>biosynthesis</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>carbohydrate metabolism</topic><topic>enzymes</topic><topic>excretion</topic><topic>fatty acids</topic><topic>Glycolipids - chemistry</topic><topic>Glycolipids - genetics</topic><topic>Glycolipids - metabolism</topic><topic>homeostasis</topic><topic>metabolome</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>mutants</topic><topic>Mutation</topic><topic>nutritional status</topic><topic>Oxidation-Reduction</topic><topic>Peroxisomes - chemistry</topic><topic>Peroxisomes - genetics</topic><topic>Peroxisomes - metabolism</topic><topic>Signal Transduction</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Reuss, Stephan H</creatorcontrib><creatorcontrib>Bose, Neelanjan</creatorcontrib><creatorcontrib>Srinivasan, Jagan</creatorcontrib><creatorcontrib>Yim, Joshua J</creatorcontrib><creatorcontrib>Judkins, Joshua C</creatorcontrib><creatorcontrib>Sternberg, Paul W</creatorcontrib><creatorcontrib>Schroeder, Frank C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Reuss, Stephan H</au><au>Bose, Neelanjan</au><au>Srinivasan, Jagan</au><au>Yim, Joshua J</au><au>Judkins, Joshua C</au><au>Sternberg, Paul W</au><au>Schroeder, Frank C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-01-25</date><risdate>2012</risdate><volume>134</volume><issue>3</issue><spage>1817</spage><epage>1824</epage><pages>1817-1824</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22239548</pmid><doi>10.1021/ja210202y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1817-1824
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269134
source MEDLINE; American Chemical Society Journals
subjects amino acid metabolism
Animals
beta oxidation
bioactive properties
biochemical pathways
biogenesis
biosynthesis
Caenorhabditis elegans
Caenorhabditis elegans - chemistry
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
carbohydrate metabolism
enzymes
excretion
fatty acids
Glycolipids - chemistry
Glycolipids - genetics
Glycolipids - metabolism
homeostasis
metabolome
metabolomics
Metabolomics - methods
mutants
Mutation
nutritional status
Oxidation-Reduction
Peroxisomes - chemistry
Peroxisomes - genetics
Peroxisomes - metabolism
Signal Transduction
Tandem Mass Spectrometry
title Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Metabolomics%20Reveals%20Biogenesis%20of%20Ascarosides,%20a%20Modular%20Library%20of%20Small-Molecule%20Signals%20in%20C.%20elegans&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=von%20Reuss,%20Stephan%20H&rft.date=2012-01-25&rft.volume=134&rft.issue=3&rft.spage=1817&rft.epage=1824&rft.pages=1817-1824&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja210202y&rft_dat=%3Cproquest_pubme%3E2431959847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431959847&rft_id=info:pmid/22239548&rfr_iscdi=true