Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans
In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-01, Vol.134 (3), p.1817-1824 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1824 |
---|---|
container_issue | 3 |
container_start_page | 1817 |
container_title | Journal of the American Chemical Society |
container_volume | 134 |
creator | von Reuss, Stephan H Bose, Neelanjan Srinivasan, Jagan Yim, Joshua J Judkins, Joshua C Sternberg, Paul W Schroeder, Frank C |
description | In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective. |
doi_str_mv | 10.1021/ja210202y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431959847</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rh68A9ILqKCveazu3MR1sEvmEFw9Ryq0zVjhnRnTLoH9t-bYdZBQTwVVXl4qNRLyFPOrjgT_M0ORKlM3N4jC64FqzQX9X2yYIyJqmlreUEe5bwrrRItf0guhBDSaNUuyLyMwx4STP6AdI0TdDHEwbtMv-IBIWT6zsctjph9pnFDr7ODFLPvMb-mQNexnwMkuvJdgnR7JG4GCKFax4BuDkhv_HY8avxIl1cUA25hzI_Jg00Z4pO7ekm-f3j_bfmpWn35-Hl5vapAyWaqhJFCN7pnWINslTZN1yijai022BnUrahlx0D3HW9VbxzTXMneNa41rtMM5CV5e_Lu527A3uE4JQh2n_xQtrURvP37ZfQ_7DYerBS14VIVwYs7QYo_Z8yTHXx2GAKMGOdsDW9103AjC_nyv6RQkhttWtUU9NUJdeWSOeHmvBBn9hioPQda2Gd__uBM_k6wAM9PALhsd3FOx2v_Q_QLrqKnxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431959847</pqid></control><display><type>article</type><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</creator><creatorcontrib>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</creatorcontrib><description>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja210202y</identifier><identifier>PMID: 22239548</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>amino acid metabolism ; Animals ; beta oxidation ; bioactive properties ; biochemical pathways ; biogenesis ; biosynthesis ; Caenorhabditis elegans ; Caenorhabditis elegans - chemistry ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; carbohydrate metabolism ; enzymes ; excretion ; fatty acids ; Glycolipids - chemistry ; Glycolipids - genetics ; Glycolipids - metabolism ; homeostasis ; metabolome ; metabolomics ; Metabolomics - methods ; mutants ; Mutation ; nutritional status ; Oxidation-Reduction ; Peroxisomes - chemistry ; Peroxisomes - genetics ; Peroxisomes - metabolism ; Signal Transduction ; Tandem Mass Spectrometry</subject><ispartof>Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1817-1824</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</citedby><cites>FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja210202y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja210202y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22239548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Reuss, Stephan H</creatorcontrib><creatorcontrib>Bose, Neelanjan</creatorcontrib><creatorcontrib>Srinivasan, Jagan</creatorcontrib><creatorcontrib>Yim, Joshua J</creatorcontrib><creatorcontrib>Judkins, Joshua C</creatorcontrib><creatorcontrib>Sternberg, Paul W</creatorcontrib><creatorcontrib>Schroeder, Frank C</creatorcontrib><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</description><subject>amino acid metabolism</subject><subject>Animals</subject><subject>beta oxidation</subject><subject>bioactive properties</subject><subject>biochemical pathways</subject><subject>biogenesis</subject><subject>biosynthesis</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>carbohydrate metabolism</subject><subject>enzymes</subject><subject>excretion</subject><subject>fatty acids</subject><subject>Glycolipids - chemistry</subject><subject>Glycolipids - genetics</subject><subject>Glycolipids - metabolism</subject><subject>homeostasis</subject><subject>metabolome</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>mutants</subject><subject>Mutation</subject><subject>nutritional status</subject><subject>Oxidation-Reduction</subject><subject>Peroxisomes - chemistry</subject><subject>Peroxisomes - genetics</subject><subject>Peroxisomes - metabolism</subject><subject>Signal Transduction</subject><subject>Tandem Mass Spectrometry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rh68A9ILqKCveazu3MR1sEvmEFw9Ryq0zVjhnRnTLoH9t-bYdZBQTwVVXl4qNRLyFPOrjgT_M0ORKlM3N4jC64FqzQX9X2yYIyJqmlreUEe5bwrrRItf0guhBDSaNUuyLyMwx4STP6AdI0TdDHEwbtMv-IBIWT6zsctjph9pnFDr7ODFLPvMb-mQNexnwMkuvJdgnR7JG4GCKFax4BuDkhv_HY8avxIl1cUA25hzI_Jg00Z4pO7ekm-f3j_bfmpWn35-Hl5vapAyWaqhJFCN7pnWINslTZN1yijai022BnUrahlx0D3HW9VbxzTXMneNa41rtMM5CV5e_Lu527A3uE4JQh2n_xQtrURvP37ZfQ_7DYerBS14VIVwYs7QYo_Z8yTHXx2GAKMGOdsDW9103AjC_nyv6RQkhttWtUU9NUJdeWSOeHmvBBn9hioPQda2Gd__uBM_k6wAM9PALhsd3FOx2v_Q_QLrqKnxQ</recordid><startdate>20120125</startdate><enddate>20120125</enddate><creator>von Reuss, Stephan H</creator><creator>Bose, Neelanjan</creator><creator>Srinivasan, Jagan</creator><creator>Yim, Joshua J</creator><creator>Judkins, Joshua C</creator><creator>Sternberg, Paul W</creator><creator>Schroeder, Frank C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120125</creationdate><title>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</title><author>von Reuss, Stephan H ; Bose, Neelanjan ; Srinivasan, Jagan ; Yim, Joshua J ; Judkins, Joshua C ; Sternberg, Paul W ; Schroeder, Frank C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-2932575d0e6a384597b7494652feb9e58263b0a5db184d9c05143dc7c89cb50a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>amino acid metabolism</topic><topic>Animals</topic><topic>beta oxidation</topic><topic>bioactive properties</topic><topic>biochemical pathways</topic><topic>biogenesis</topic><topic>biosynthesis</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>carbohydrate metabolism</topic><topic>enzymes</topic><topic>excretion</topic><topic>fatty acids</topic><topic>Glycolipids - chemistry</topic><topic>Glycolipids - genetics</topic><topic>Glycolipids - metabolism</topic><topic>homeostasis</topic><topic>metabolome</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>mutants</topic><topic>Mutation</topic><topic>nutritional status</topic><topic>Oxidation-Reduction</topic><topic>Peroxisomes - chemistry</topic><topic>Peroxisomes - genetics</topic><topic>Peroxisomes - metabolism</topic><topic>Signal Transduction</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Reuss, Stephan H</creatorcontrib><creatorcontrib>Bose, Neelanjan</creatorcontrib><creatorcontrib>Srinivasan, Jagan</creatorcontrib><creatorcontrib>Yim, Joshua J</creatorcontrib><creatorcontrib>Judkins, Joshua C</creatorcontrib><creatorcontrib>Sternberg, Paul W</creatorcontrib><creatorcontrib>Schroeder, Frank C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Reuss, Stephan H</au><au>Bose, Neelanjan</au><au>Srinivasan, Jagan</au><au>Yim, Joshua J</au><au>Judkins, Joshua C</au><au>Sternberg, Paul W</au><au>Schroeder, Frank C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-01-25</date><risdate>2012</risdate><volume>134</volume><issue>3</issue><spage>1817</spage><epage>1824</epage><pages>1817-1824</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22239548</pmid><doi>10.1021/ja210202y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2012-01, Vol.134 (3), p.1817-1824 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269134 |
source | MEDLINE; American Chemical Society Journals |
subjects | amino acid metabolism Animals beta oxidation bioactive properties biochemical pathways biogenesis biosynthesis Caenorhabditis elegans Caenorhabditis elegans - chemistry Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism carbohydrate metabolism enzymes excretion fatty acids Glycolipids - chemistry Glycolipids - genetics Glycolipids - metabolism homeostasis metabolome metabolomics Metabolomics - methods mutants Mutation nutritional status Oxidation-Reduction Peroxisomes - chemistry Peroxisomes - genetics Peroxisomes - metabolism Signal Transduction Tandem Mass Spectrometry |
title | Comparative Metabolomics Reveals Biogenesis of Ascarosides, a Modular Library of Small-Molecule Signals in C. elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Metabolomics%20Reveals%20Biogenesis%20of%20Ascarosides,%20a%20Modular%20Library%20of%20Small-Molecule%20Signals%20in%20C.%20elegans&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=von%20Reuss,%20Stephan%20H&rft.date=2012-01-25&rft.volume=134&rft.issue=3&rft.spage=1817&rft.epage=1824&rft.pages=1817-1824&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja210202y&rft_dat=%3Cproquest_pubme%3E2431959847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431959847&rft_id=info:pmid/22239548&rfr_iscdi=true |