Parallel Mechanisms Encode Direction in the Retina
In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2011-08, Vol.71 (4), p.683-694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 4 |
container_start_page | 683 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 71 |
creator | Trenholm, Stuart Johnson, Kyle Li, Xiao Smith, Robert G. Awatramani, Gautam B. |
description | In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions.
► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs |
doi_str_mv | 10.1016/j.neuron.2011.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311005484</els_id><sourcerecordid>3388960581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EosvCP0AoEgdOCR7HduwLEmoLVCoCIThbXnvMepW1i51U4t-TdkspHOhpDvPmzcz7CHkOtAMK8vWuSziXnDpGAToqO8roA7ICqoeWg9YPyYoqLVvJhv6IPKl1RylwoeExOWKg5KAUXxH22RY7jjg2H9FtbYp1X5vT5LLH5iQWdFPMqYmpmbbYfMEpJvuUPAp2rPjspq7Jt3enX48_tOef3p8dvz1vnWBsankQXviN8wp67YIPvcchUM2lt0EJvjQ1t2EjANBrNwSLwJkMijuvPWX9mrw5-F7Mmz16h2laTjUXJe5t-WmyjebvTopb8z1fmp5JDUwuBq9uDEr-MWOdzD5Wh-NoE-a5GqX7HqQaxP1KJYSketGvyct_lLs8l7TkYEBwrSXtOV1U_KByJddaMNxeDdRc0TM7c6BnrugZKs1Cbxl7cffj26HfuP5EgkvulxGLqS5icuivURmf4_83_AIc162h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549960340</pqid></control><display><type>article</type><title>Parallel Mechanisms Encode Direction in the Retina</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</creator><creatorcontrib>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</creatorcontrib><description>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions.
► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.06.020</identifier><identifier>PMID: 21867884</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Asymmetry ; Dendrites - physiology ; Dendrites - ultrastructure ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Mice ; Mice, Transgenic ; Motion Perception - physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Photoreceptors ; Retina ; Retina - cytology ; Retina - physiology ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - ultrastructure ; Rodents ; Studies ; Synaptic Transmission - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2011-08, Vol.71 (4), p.683-694</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 25, 2011</rights><rights>2011 Elsevier Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</citedby><cites>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311005484$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21867884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trenholm, Stuart</creatorcontrib><creatorcontrib>Johnson, Kyle</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Smith, Robert G.</creatorcontrib><creatorcontrib>Awatramani, Gautam B.</creatorcontrib><title>Parallel Mechanisms Encode Direction in the Retina</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions.
► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motion Perception - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - ultrastructure</subject><subject>Rodents</subject><subject>Studies</subject><subject>Synaptic Transmission - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EosvCP0AoEgdOCR7HduwLEmoLVCoCIThbXnvMepW1i51U4t-TdkspHOhpDvPmzcz7CHkOtAMK8vWuSziXnDpGAToqO8roA7ICqoeWg9YPyYoqLVvJhv6IPKl1RylwoeExOWKg5KAUXxH22RY7jjg2H9FtbYp1X5vT5LLH5iQWdFPMqYmpmbbYfMEpJvuUPAp2rPjspq7Jt3enX48_tOef3p8dvz1vnWBsankQXviN8wp67YIPvcchUM2lt0EJvjQ1t2EjANBrNwSLwJkMijuvPWX9mrw5-F7Mmz16h2laTjUXJe5t-WmyjebvTopb8z1fmp5JDUwuBq9uDEr-MWOdzD5Wh-NoE-a5GqX7HqQaxP1KJYSketGvyct_lLs8l7TkYEBwrSXtOV1U_KByJddaMNxeDdRc0TM7c6BnrugZKs1Cbxl7cffj26HfuP5EgkvulxGLqS5icuivURmf4_83_AIc162h</recordid><startdate>20110825</startdate><enddate>20110825</enddate><creator>Trenholm, Stuart</creator><creator>Johnson, Kyle</creator><creator>Li, Xiao</creator><creator>Smith, Robert G.</creator><creator>Awatramani, Gautam B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110825</creationdate><title>Parallel Mechanisms Encode Direction in the Retina</title><author>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motion Perception - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - ultrastructure</topic><topic>Rodents</topic><topic>Studies</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trenholm, Stuart</creatorcontrib><creatorcontrib>Johnson, Kyle</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Smith, Robert G.</creatorcontrib><creatorcontrib>Awatramani, Gautam B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trenholm, Stuart</au><au>Johnson, Kyle</au><au>Li, Xiao</au><au>Smith, Robert G.</au><au>Awatramani, Gautam B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Mechanisms Encode Direction in the Retina</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-08-25</date><risdate>2011</risdate><volume>71</volume><issue>4</issue><spage>683</spage><epage>694</epage><pages>683-694</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions.
► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21867884</pmid><doi>10.1016/j.neuron.2011.06.020</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2011-08, Vol.71 (4), p.683-694 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269126 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Action Potentials - physiology Animals Asymmetry Dendrites - physiology Dendrites - ultrastructure Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Mice Mice, Transgenic Motion Perception - physiology Patch-Clamp Techniques Photic Stimulation Photoreceptors Retina Retina - cytology Retina - physiology Retinal Ganglion Cells - physiology Retinal Ganglion Cells - ultrastructure Rodents Studies Synaptic Transmission - physiology |
title | Parallel Mechanisms Encode Direction in the Retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Mechanisms%20Encode%20Direction%20in%20the%20Retina&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Trenholm,%20Stuart&rft.date=2011-08-25&rft.volume=71&rft.issue=4&rft.spage=683&rft.epage=694&rft.pages=683-694&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.06.020&rft_dat=%3Cproquest_pubme%3E3388960581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549960340&rft_id=info:pmid/21867884&rft_els_id=S0896627311005484&rfr_iscdi=true |