Parallel Mechanisms Encode Direction in the Retina

In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2011-08, Vol.71 (4), p.683-694
Hauptverfasser: Trenholm, Stuart, Johnson, Kyle, Li, Xiao, Smith, Robert G., Awatramani, Gautam B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 4
container_start_page 683
container_title Neuron (Cambridge, Mass.)
container_volume 71
creator Trenholm, Stuart
Johnson, Kyle
Li, Xiao
Smith, Robert G.
Awatramani, Gautam B.
description In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions. ► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs
doi_str_mv 10.1016/j.neuron.2011.06.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311005484</els_id><sourcerecordid>3388960581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EosvCP0AoEgdOCR7HduwLEmoLVCoCIThbXnvMepW1i51U4t-TdkspHOhpDvPmzcz7CHkOtAMK8vWuSziXnDpGAToqO8roA7ICqoeWg9YPyYoqLVvJhv6IPKl1RylwoeExOWKg5KAUXxH22RY7jjg2H9FtbYp1X5vT5LLH5iQWdFPMqYmpmbbYfMEpJvuUPAp2rPjspq7Jt3enX48_tOef3p8dvz1vnWBsankQXviN8wp67YIPvcchUM2lt0EJvjQ1t2EjANBrNwSLwJkMijuvPWX9mrw5-F7Mmz16h2laTjUXJe5t-WmyjebvTopb8z1fmp5JDUwuBq9uDEr-MWOdzD5Wh-NoE-a5GqX7HqQaxP1KJYSketGvyct_lLs8l7TkYEBwrSXtOV1U_KByJddaMNxeDdRc0TM7c6BnrugZKs1Cbxl7cffj26HfuP5EgkvulxGLqS5icuivURmf4_83_AIc162h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549960340</pqid></control><display><type>article</type><title>Parallel Mechanisms Encode Direction in the Retina</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</creator><creatorcontrib>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</creatorcontrib><description>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions. ► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.06.020</identifier><identifier>PMID: 21867884</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Asymmetry ; Dendrites - physiology ; Dendrites - ultrastructure ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Mice ; Mice, Transgenic ; Motion Perception - physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Photoreceptors ; Retina ; Retina - cytology ; Retina - physiology ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - ultrastructure ; Rodents ; Studies ; Synaptic Transmission - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2011-08, Vol.71 (4), p.683-694</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 25, 2011</rights><rights>2011 Elsevier Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</citedby><cites>FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311005484$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21867884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trenholm, Stuart</creatorcontrib><creatorcontrib>Johnson, Kyle</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Smith, Robert G.</creatorcontrib><creatorcontrib>Awatramani, Gautam B.</creatorcontrib><title>Parallel Mechanisms Encode Direction in the Retina</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions. ► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motion Perception - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - ultrastructure</subject><subject>Rodents</subject><subject>Studies</subject><subject>Synaptic Transmission - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EosvCP0AoEgdOCR7HduwLEmoLVCoCIThbXnvMepW1i51U4t-TdkspHOhpDvPmzcz7CHkOtAMK8vWuSziXnDpGAToqO8roA7ICqoeWg9YPyYoqLVvJhv6IPKl1RylwoeExOWKg5KAUXxH22RY7jjg2H9FtbYp1X5vT5LLH5iQWdFPMqYmpmbbYfMEpJvuUPAp2rPjspq7Jt3enX48_tOef3p8dvz1vnWBsankQXviN8wp67YIPvcchUM2lt0EJvjQ1t2EjANBrNwSLwJkMijuvPWX9mrw5-F7Mmz16h2laTjUXJe5t-WmyjebvTopb8z1fmp5JDUwuBq9uDEr-MWOdzD5Wh-NoE-a5GqX7HqQaxP1KJYSketGvyct_lLs8l7TkYEBwrSXtOV1U_KByJddaMNxeDdRc0TM7c6BnrugZKs1Cbxl7cffj26HfuP5EgkvulxGLqS5icuivURmf4_83_AIc162h</recordid><startdate>20110825</startdate><enddate>20110825</enddate><creator>Trenholm, Stuart</creator><creator>Johnson, Kyle</creator><creator>Li, Xiao</creator><creator>Smith, Robert G.</creator><creator>Awatramani, Gautam B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110825</creationdate><title>Parallel Mechanisms Encode Direction in the Retina</title><author>Trenholm, Stuart ; Johnson, Kyle ; Li, Xiao ; Smith, Robert G. ; Awatramani, Gautam B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-4f5d5dbcd8139cfdf3de7f0946daf854d5d94afb511ed9c7fae1426f84cd9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motion Perception - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - ultrastructure</topic><topic>Rodents</topic><topic>Studies</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trenholm, Stuart</creatorcontrib><creatorcontrib>Johnson, Kyle</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Smith, Robert G.</creatorcontrib><creatorcontrib>Awatramani, Gautam B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trenholm, Stuart</au><au>Johnson, Kyle</au><au>Li, Xiao</au><au>Smith, Robert G.</au><au>Awatramani, Gautam B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Mechanisms Encode Direction in the Retina</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-08-25</date><risdate>2011</risdate><volume>71</volume><issue>4</issue><spage>683</spage><epage>694</epage><pages>683-694</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In the retina, presynaptic inhibitory mechanisms that shape directionally selective (DS) responses in output ganglion cells are well established. However, the nature of inhibition-independent forms of directional selectivity remains poorly defined. Here, we describe a genetically specified set of ON-OFF DS ganglion cells (DSGCs) that code anterior motion. This entire population of DSGCs exhibits asymmetric dendritic arborizations that orientate toward the preferred direction. We demonstrate that morphological asymmetries along with nonlinear dendritic conductances generate a centrifugal (soma-to-dendrite) preference that does not critically depend upon, but works in parallel with the GABAergic circuitry. We also show that in symmetrical DSGCs, such dendritic DS mechanisms are aligned with, or are in opposition to, the inhibitory DS circuitry in distinct dendritic subfields where they differentially interact to promote or weaken directional preferences. Thus, pre- and postsynaptic DS mechanisms interact uniquely in distinct ganglion cell populations, enabling efficient DS coding under diverse conditions. ► Anterior coding DSGCs are asymmetric and point in the preferred direction ► DS responses persist when classic inhibitory DS circuitry is pharmacologically blocked ► Nonlinearities in DSGC dendrites account for inhibition-independent DS responses ► Multiple mechanisms interact differentially in distinct dendritic subfields of DSGCs</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21867884</pmid><doi>10.1016/j.neuron.2011.06.020</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2011-08, Vol.71 (4), p.683-694
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269126
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Action Potentials - physiology
Animals
Asymmetry
Dendrites - physiology
Dendrites - ultrastructure
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Mice
Mice, Transgenic
Motion Perception - physiology
Patch-Clamp Techniques
Photic Stimulation
Photoreceptors
Retina
Retina - cytology
Retina - physiology
Retinal Ganglion Cells - physiology
Retinal Ganglion Cells - ultrastructure
Rodents
Studies
Synaptic Transmission - physiology
title Parallel Mechanisms Encode Direction in the Retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Mechanisms%20Encode%20Direction%20in%20the%20Retina&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Trenholm,%20Stuart&rft.date=2011-08-25&rft.volume=71&rft.issue=4&rft.spage=683&rft.epage=694&rft.pages=683-694&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.06.020&rft_dat=%3Cproquest_pubme%3E3388960581%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1549960340&rft_id=info:pmid/21867884&rft_els_id=S0896627311005484&rfr_iscdi=true