Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibro...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2011-02, Vol.71 (4), p.1362-1373 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1373 |
---|---|
container_issue | 4 |
container_start_page | 1362 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 71 |
creator | HU-LOWE, Dana D ENHONG CHEN AMUNDSON, Karin SIMON, Ronald ERBERSDOBLER, Andreas BERGQVIST, Simon ZHENG FENG SWANSON, Terri A SIMMONS, Brett H LIPPINCOTT, John CASPERSON, Gerald F LEVIN, Wendy J LIANGLIN ZHANG GALLO STAMPINO, Corrado SHALINSKY, David R FERRARA, Katherine W FIEDLER, Walter BERTOLINI, Francesco WATSON, Katherine D MANCUSO, Patrizia LAPPIN, Patrick WICKMAN, Grant CHEN, Jeffrey H JIANYING WANG XIN JIANG |
description | Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic. |
doi_str_mv | 10.1158/0008-5472.can-10-1451 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21212415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</originalsourceid><addsrcrecordid>eNpVkd1u1DAQhS0EokvhEUC-4dLFju3EuUFardpSsaVStXBrOd5JYtjYke2txHPwwnj7sxTNhTXjc74Z6SD0ntEzxqT6RClVRIqmOrPGE0YJE5K9QAsmuSKNEPIlWhw1J-hNSj9LKxmVr9FJxUoJJhfoz8bEAbLzA17a7O6cx7dgYc4hkrX7Bfir8yYBZvjKj65zOeGlH1wYwENyCRu_xZv9FKJ7muQxhv0wYoOvwY7GuzTh0N_Tg8erMM07mMBnE3_jHAotO_Lj_PICb0aIZnaQ3qJXvdklePf4nqLvF-eb1Reyvrm8Wi3XxEqpMmmlpI2S3BouWtpZ1pqWAlNN3YAydddsKxBCUa7qmlmq-qrrOVe8klS121byU_T5gTvvuwm2thwVzU7P0U3lOB2M0___eDfqIdxpXtUtpbwA5APAxpBShP7oZVQfUtKHBPQhAb1afruflpSK78PzxUfXUyxF8PFRYJI1uz4ab136p-OqYVJU_C99OJ0J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</creator><creatorcontrib>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</creatorcontrib><description>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-1451</identifier><identifier>PMID: 21212415</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Activin Receptors, Type II - antagonists & inhibitors ; Angiogenesis Inhibitors - administration & dosage ; Angiogenesis Inhibitors - therapeutic use ; Animals ; Antineoplastic agents ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biological and medical sciences ; Cells, Cultured ; Down-Regulation - drug effects ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Drug Synergism ; Humans ; Medical sciences ; Mice ; Mice, SCID ; Molecular Targeted Therapy - methods ; Neoplasms - blood supply ; Neoplasms - drug therapy ; Neoplasms - pathology ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - pathology ; Pharmacology. Drug treatments ; Signal Transduction - drug effects ; Tumors ; Vascular Endothelial Growth Factor A - antagonists & inhibitors ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer research (Chicago, Ill.), 2011-02, Vol.71 (4), p.1362-1373</ispartof><rights>2015 INIST-CNRS</rights><rights>2011 AACR.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</citedby><cites>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23871542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21212415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HU-LOWE, Dana D</creatorcontrib><creatorcontrib>ENHONG CHEN</creatorcontrib><creatorcontrib>AMUNDSON, Karin</creatorcontrib><creatorcontrib>SIMON, Ronald</creatorcontrib><creatorcontrib>ERBERSDOBLER, Andreas</creatorcontrib><creatorcontrib>BERGQVIST, Simon</creatorcontrib><creatorcontrib>ZHENG FENG</creatorcontrib><creatorcontrib>SWANSON, Terri A</creatorcontrib><creatorcontrib>SIMMONS, Brett H</creatorcontrib><creatorcontrib>LIPPINCOTT, John</creatorcontrib><creatorcontrib>CASPERSON, Gerald F</creatorcontrib><creatorcontrib>LEVIN, Wendy J</creatorcontrib><creatorcontrib>LIANGLIN ZHANG</creatorcontrib><creatorcontrib>GALLO STAMPINO, Corrado</creatorcontrib><creatorcontrib>SHALINSKY, David R</creatorcontrib><creatorcontrib>FERRARA, Katherine W</creatorcontrib><creatorcontrib>FIEDLER, Walter</creatorcontrib><creatorcontrib>BERTOLINI, Francesco</creatorcontrib><creatorcontrib>WATSON, Katherine D</creatorcontrib><creatorcontrib>MANCUSO, Patrizia</creatorcontrib><creatorcontrib>LAPPIN, Patrick</creatorcontrib><creatorcontrib>WICKMAN, Grant</creatorcontrib><creatorcontrib>CHEN, Jeffrey H</creatorcontrib><creatorcontrib>JIANYING WANG</creatorcontrib><creatorcontrib>XIN JIANG</creatorcontrib><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</description><subject>Activin Receptors, Type II - antagonists & inhibitors</subject><subject>Angiogenesis Inhibitors - administration & dosage</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Down-Regulation - drug effects</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Drug Synergism</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Neoplasms - blood supply</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Pharmacology. Drug treatments</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><subject>Vascular Endothelial Growth Factor A - antagonists & inhibitors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1u1DAQhS0EokvhEUC-4dLFju3EuUFardpSsaVStXBrOd5JYtjYke2txHPwwnj7sxTNhTXjc74Z6SD0ntEzxqT6RClVRIqmOrPGE0YJE5K9QAsmuSKNEPIlWhw1J-hNSj9LKxmVr9FJxUoJJhfoz8bEAbLzA17a7O6cx7dgYc4hkrX7Bfir8yYBZvjKj65zOeGlH1wYwENyCRu_xZv9FKJ7muQxhv0wYoOvwY7GuzTh0N_Tg8erMM07mMBnE3_jHAotO_Lj_PICb0aIZnaQ3qJXvdklePf4nqLvF-eb1Reyvrm8Wi3XxEqpMmmlpI2S3BouWtpZ1pqWAlNN3YAydddsKxBCUa7qmlmq-qrrOVe8klS121byU_T5gTvvuwm2thwVzU7P0U3lOB2M0___eDfqIdxpXtUtpbwA5APAxpBShP7oZVQfUtKHBPQhAb1afruflpSK78PzxUfXUyxF8PFRYJI1uz4ab136p-OqYVJU_C99OJ0J</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>HU-LOWE, Dana D</creator><creator>ENHONG CHEN</creator><creator>AMUNDSON, Karin</creator><creator>SIMON, Ronald</creator><creator>ERBERSDOBLER, Andreas</creator><creator>BERGQVIST, Simon</creator><creator>ZHENG FENG</creator><creator>SWANSON, Terri A</creator><creator>SIMMONS, Brett H</creator><creator>LIPPINCOTT, John</creator><creator>CASPERSON, Gerald F</creator><creator>LEVIN, Wendy J</creator><creator>LIANGLIN ZHANG</creator><creator>GALLO STAMPINO, Corrado</creator><creator>SHALINSKY, David R</creator><creator>FERRARA, Katherine W</creator><creator>FIEDLER, Walter</creator><creator>BERTOLINI, Francesco</creator><creator>WATSON, Katherine D</creator><creator>MANCUSO, Patrizia</creator><creator>LAPPIN, Patrick</creator><creator>WICKMAN, Grant</creator><creator>CHEN, Jeffrey H</creator><creator>JIANYING WANG</creator><creator>XIN JIANG</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><author>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activin Receptors, Type II - antagonists & inhibitors</topic><topic>Angiogenesis Inhibitors - administration & dosage</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Down-Regulation - drug effects</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Drug Synergism</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Neoplasms - blood supply</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Pharmacology. Drug treatments</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><topic>Vascular Endothelial Growth Factor A - antagonists & inhibitors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU-LOWE, Dana D</creatorcontrib><creatorcontrib>ENHONG CHEN</creatorcontrib><creatorcontrib>AMUNDSON, Karin</creatorcontrib><creatorcontrib>SIMON, Ronald</creatorcontrib><creatorcontrib>ERBERSDOBLER, Andreas</creatorcontrib><creatorcontrib>BERGQVIST, Simon</creatorcontrib><creatorcontrib>ZHENG FENG</creatorcontrib><creatorcontrib>SWANSON, Terri A</creatorcontrib><creatorcontrib>SIMMONS, Brett H</creatorcontrib><creatorcontrib>LIPPINCOTT, John</creatorcontrib><creatorcontrib>CASPERSON, Gerald F</creatorcontrib><creatorcontrib>LEVIN, Wendy J</creatorcontrib><creatorcontrib>LIANGLIN ZHANG</creatorcontrib><creatorcontrib>GALLO STAMPINO, Corrado</creatorcontrib><creatorcontrib>SHALINSKY, David R</creatorcontrib><creatorcontrib>FERRARA, Katherine W</creatorcontrib><creatorcontrib>FIEDLER, Walter</creatorcontrib><creatorcontrib>BERTOLINI, Francesco</creatorcontrib><creatorcontrib>WATSON, Katherine D</creatorcontrib><creatorcontrib>MANCUSO, Patrizia</creatorcontrib><creatorcontrib>LAPPIN, Patrick</creatorcontrib><creatorcontrib>WICKMAN, Grant</creatorcontrib><creatorcontrib>CHEN, Jeffrey H</creatorcontrib><creatorcontrib>JIANYING WANG</creatorcontrib><creatorcontrib>XIN JIANG</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU-LOWE, Dana D</au><au>ENHONG CHEN</au><au>AMUNDSON, Karin</au><au>SIMON, Ronald</au><au>ERBERSDOBLER, Andreas</au><au>BERGQVIST, Simon</au><au>ZHENG FENG</au><au>SWANSON, Terri A</au><au>SIMMONS, Brett H</au><au>LIPPINCOTT, John</au><au>CASPERSON, Gerald F</au><au>LEVIN, Wendy J</au><au>LIANGLIN ZHANG</au><au>GALLO STAMPINO, Corrado</au><au>SHALINSKY, David R</au><au>FERRARA, Katherine W</au><au>FIEDLER, Walter</au><au>BERTOLINI, Francesco</au><au>WATSON, Katherine D</au><au>MANCUSO, Patrizia</au><au>LAPPIN, Patrick</au><au>WICKMAN, Grant</au><au>CHEN, Jeffrey H</au><au>JIANYING WANG</au><au>XIN JIANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>71</volume><issue>4</issue><spage>1362</spage><epage>1373</epage><pages>1362-1373</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21212415</pmid><doi>10.1158/0008-5472.can-10-1451</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2011-02, Vol.71 (4), p.1362-1373 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269003 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Activin Receptors, Type II - antagonists & inhibitors Angiogenesis Inhibitors - administration & dosage Angiogenesis Inhibitors - therapeutic use Animals Antineoplastic agents Antineoplastic Combined Chemotherapy Protocols - therapeutic use Biological and medical sciences Cells, Cultured Down-Regulation - drug effects Drug Resistance, Neoplasm - drug effects Drug Resistance, Neoplasm - genetics Drug Synergism Humans Medical sciences Mice Mice, SCID Molecular Targeted Therapy - methods Neoplasms - blood supply Neoplasms - drug therapy Neoplasms - pathology Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - pathology Pharmacology. Drug treatments Signal Transduction - drug effects Tumors Vascular Endothelial Growth Factor A - antagonists & inhibitors Xenograft Model Antitumor Assays |
title | Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20Activin%20Receptor-Like%20Kinase%201%20Inhibits%20Angiogenesis%20and%20Tumorigenesis%20through%20a%20Mechanism%20of%20Action%20Complementary%20to%20Anti-VEGF%20Therapies&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=HU-LOWE,%20Dana%20D&rft.date=2011-02-15&rft.volume=71&rft.issue=4&rft.spage=1362&rft.epage=1373&rft.pages=1362-1373&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-1451&rft_dat=%3Cpubmed_cross%3E21212415%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21212415&rfr_iscdi=true |