Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies

Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2011-02, Vol.71 (4), p.1362-1373
Hauptverfasser: HU-LOWE, Dana D, ENHONG CHEN, AMUNDSON, Karin, SIMON, Ronald, ERBERSDOBLER, Andreas, BERGQVIST, Simon, ZHENG FENG, SWANSON, Terri A, SIMMONS, Brett H, LIPPINCOTT, John, CASPERSON, Gerald F, LEVIN, Wendy J, LIANGLIN ZHANG, GALLO STAMPINO, Corrado, SHALINSKY, David R, FERRARA, Katherine W, FIEDLER, Walter, BERTOLINI, Francesco, WATSON, Katherine D, MANCUSO, Patrizia, LAPPIN, Patrick, WICKMAN, Grant, CHEN, Jeffrey H, JIANYING WANG, XIN JIANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1373
container_issue 4
container_start_page 1362
container_title Cancer research (Chicago, Ill.)
container_volume 71
creator HU-LOWE, Dana D
ENHONG CHEN
AMUNDSON, Karin
SIMON, Ronald
ERBERSDOBLER, Andreas
BERGQVIST, Simon
ZHENG FENG
SWANSON, Terri A
SIMMONS, Brett H
LIPPINCOTT, John
CASPERSON, Gerald F
LEVIN, Wendy J
LIANGLIN ZHANG
GALLO STAMPINO, Corrado
SHALINSKY, David R
FERRARA, Katherine W
FIEDLER, Walter
BERTOLINI, Francesco
WATSON, Katherine D
MANCUSO, Patrizia
LAPPIN, Patrick
WICKMAN, Grant
CHEN, Jeffrey H
JIANYING WANG
XIN JIANG
description Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.
doi_str_mv 10.1158/0008-5472.can-10-1451
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21212415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</originalsourceid><addsrcrecordid>eNpVkd1u1DAQhS0EokvhEUC-4dLFju3EuUFardpSsaVStXBrOd5JYtjYke2txHPwwnj7sxTNhTXjc74Z6SD0ntEzxqT6RClVRIqmOrPGE0YJE5K9QAsmuSKNEPIlWhw1J-hNSj9LKxmVr9FJxUoJJhfoz8bEAbLzA17a7O6cx7dgYc4hkrX7Bfir8yYBZvjKj65zOeGlH1wYwENyCRu_xZv9FKJ7muQxhv0wYoOvwY7GuzTh0N_Tg8erMM07mMBnE3_jHAotO_Lj_PICb0aIZnaQ3qJXvdklePf4nqLvF-eb1Reyvrm8Wi3XxEqpMmmlpI2S3BouWtpZ1pqWAlNN3YAydddsKxBCUa7qmlmq-qrrOVe8klS121byU_T5gTvvuwm2thwVzU7P0U3lOB2M0___eDfqIdxpXtUtpbwA5APAxpBShP7oZVQfUtKHBPQhAb1afruflpSK78PzxUfXUyxF8PFRYJI1uz4ab136p-OqYVJU_C99OJ0J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</creator><creatorcontrib>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</creatorcontrib><description>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-10-1451</identifier><identifier>PMID: 21212415</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Activin Receptors, Type II - antagonists &amp; inhibitors ; Angiogenesis Inhibitors - administration &amp; dosage ; Angiogenesis Inhibitors - therapeutic use ; Animals ; Antineoplastic agents ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Biological and medical sciences ; Cells, Cultured ; Down-Regulation - drug effects ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Drug Synergism ; Humans ; Medical sciences ; Mice ; Mice, SCID ; Molecular Targeted Therapy - methods ; Neoplasms - blood supply ; Neoplasms - drug therapy ; Neoplasms - pathology ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - pathology ; Pharmacology. Drug treatments ; Signal Transduction - drug effects ; Tumors ; Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer research (Chicago, Ill.), 2011-02, Vol.71 (4), p.1362-1373</ispartof><rights>2015 INIST-CNRS</rights><rights>2011 AACR.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</citedby><cites>FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23871542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21212415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HU-LOWE, Dana D</creatorcontrib><creatorcontrib>ENHONG CHEN</creatorcontrib><creatorcontrib>AMUNDSON, Karin</creatorcontrib><creatorcontrib>SIMON, Ronald</creatorcontrib><creatorcontrib>ERBERSDOBLER, Andreas</creatorcontrib><creatorcontrib>BERGQVIST, Simon</creatorcontrib><creatorcontrib>ZHENG FENG</creatorcontrib><creatorcontrib>SWANSON, Terri A</creatorcontrib><creatorcontrib>SIMMONS, Brett H</creatorcontrib><creatorcontrib>LIPPINCOTT, John</creatorcontrib><creatorcontrib>CASPERSON, Gerald F</creatorcontrib><creatorcontrib>LEVIN, Wendy J</creatorcontrib><creatorcontrib>LIANGLIN ZHANG</creatorcontrib><creatorcontrib>GALLO STAMPINO, Corrado</creatorcontrib><creatorcontrib>SHALINSKY, David R</creatorcontrib><creatorcontrib>FERRARA, Katherine W</creatorcontrib><creatorcontrib>FIEDLER, Walter</creatorcontrib><creatorcontrib>BERTOLINI, Francesco</creatorcontrib><creatorcontrib>WATSON, Katherine D</creatorcontrib><creatorcontrib>MANCUSO, Patrizia</creatorcontrib><creatorcontrib>LAPPIN, Patrick</creatorcontrib><creatorcontrib>WICKMAN, Grant</creatorcontrib><creatorcontrib>CHEN, Jeffrey H</creatorcontrib><creatorcontrib>JIANYING WANG</creatorcontrib><creatorcontrib>XIN JIANG</creatorcontrib><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</description><subject>Activin Receptors, Type II - antagonists &amp; inhibitors</subject><subject>Angiogenesis Inhibitors - administration &amp; dosage</subject><subject>Angiogenesis Inhibitors - therapeutic use</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Down-Regulation - drug effects</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Drug Synergism</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Neoplasms - blood supply</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Pharmacology. Drug treatments</subject><subject>Signal Transduction - drug effects</subject><subject>Tumors</subject><subject>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1u1DAQhS0EokvhEUC-4dLFju3EuUFardpSsaVStXBrOd5JYtjYke2txHPwwnj7sxTNhTXjc74Z6SD0ntEzxqT6RClVRIqmOrPGE0YJE5K9QAsmuSKNEPIlWhw1J-hNSj9LKxmVr9FJxUoJJhfoz8bEAbLzA17a7O6cx7dgYc4hkrX7Bfir8yYBZvjKj65zOeGlH1wYwENyCRu_xZv9FKJ7muQxhv0wYoOvwY7GuzTh0N_Tg8erMM07mMBnE3_jHAotO_Lj_PICb0aIZnaQ3qJXvdklePf4nqLvF-eb1Reyvrm8Wi3XxEqpMmmlpI2S3BouWtpZ1pqWAlNN3YAydddsKxBCUa7qmlmq-qrrOVe8klS121byU_T5gTvvuwm2thwVzU7P0U3lOB2M0___eDfqIdxpXtUtpbwA5APAxpBShP7oZVQfUtKHBPQhAb1afruflpSK78PzxUfXUyxF8PFRYJI1uz4ab136p-OqYVJU_C99OJ0J</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>HU-LOWE, Dana D</creator><creator>ENHONG CHEN</creator><creator>AMUNDSON, Karin</creator><creator>SIMON, Ronald</creator><creator>ERBERSDOBLER, Andreas</creator><creator>BERGQVIST, Simon</creator><creator>ZHENG FENG</creator><creator>SWANSON, Terri A</creator><creator>SIMMONS, Brett H</creator><creator>LIPPINCOTT, John</creator><creator>CASPERSON, Gerald F</creator><creator>LEVIN, Wendy J</creator><creator>LIANGLIN ZHANG</creator><creator>GALLO STAMPINO, Corrado</creator><creator>SHALINSKY, David R</creator><creator>FERRARA, Katherine W</creator><creator>FIEDLER, Walter</creator><creator>BERTOLINI, Francesco</creator><creator>WATSON, Katherine D</creator><creator>MANCUSO, Patrizia</creator><creator>LAPPIN, Patrick</creator><creator>WICKMAN, Grant</creator><creator>CHEN, Jeffrey H</creator><creator>JIANYING WANG</creator><creator>XIN JIANG</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</title><author>HU-LOWE, Dana D ; ENHONG CHEN ; AMUNDSON, Karin ; SIMON, Ronald ; ERBERSDOBLER, Andreas ; BERGQVIST, Simon ; ZHENG FENG ; SWANSON, Terri A ; SIMMONS, Brett H ; LIPPINCOTT, John ; CASPERSON, Gerald F ; LEVIN, Wendy J ; LIANGLIN ZHANG ; GALLO STAMPINO, Corrado ; SHALINSKY, David R ; FERRARA, Katherine W ; FIEDLER, Walter ; BERTOLINI, Francesco ; WATSON, Katherine D ; MANCUSO, Patrizia ; LAPPIN, Patrick ; WICKMAN, Grant ; CHEN, Jeffrey H ; JIANYING WANG ; XIN JIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-95507853ca3490bc19a90e18767e8a6b7d2e448038661c08f2bf338325089d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activin Receptors, Type II - antagonists &amp; inhibitors</topic><topic>Angiogenesis Inhibitors - administration &amp; dosage</topic><topic>Angiogenesis Inhibitors - therapeutic use</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Down-Regulation - drug effects</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Drug Synergism</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Neoplasms - blood supply</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Pharmacology. Drug treatments</topic><topic>Signal Transduction - drug effects</topic><topic>Tumors</topic><topic>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HU-LOWE, Dana D</creatorcontrib><creatorcontrib>ENHONG CHEN</creatorcontrib><creatorcontrib>AMUNDSON, Karin</creatorcontrib><creatorcontrib>SIMON, Ronald</creatorcontrib><creatorcontrib>ERBERSDOBLER, Andreas</creatorcontrib><creatorcontrib>BERGQVIST, Simon</creatorcontrib><creatorcontrib>ZHENG FENG</creatorcontrib><creatorcontrib>SWANSON, Terri A</creatorcontrib><creatorcontrib>SIMMONS, Brett H</creatorcontrib><creatorcontrib>LIPPINCOTT, John</creatorcontrib><creatorcontrib>CASPERSON, Gerald F</creatorcontrib><creatorcontrib>LEVIN, Wendy J</creatorcontrib><creatorcontrib>LIANGLIN ZHANG</creatorcontrib><creatorcontrib>GALLO STAMPINO, Corrado</creatorcontrib><creatorcontrib>SHALINSKY, David R</creatorcontrib><creatorcontrib>FERRARA, Katherine W</creatorcontrib><creatorcontrib>FIEDLER, Walter</creatorcontrib><creatorcontrib>BERTOLINI, Francesco</creatorcontrib><creatorcontrib>WATSON, Katherine D</creatorcontrib><creatorcontrib>MANCUSO, Patrizia</creatorcontrib><creatorcontrib>LAPPIN, Patrick</creatorcontrib><creatorcontrib>WICKMAN, Grant</creatorcontrib><creatorcontrib>CHEN, Jeffrey H</creatorcontrib><creatorcontrib>JIANYING WANG</creatorcontrib><creatorcontrib>XIN JIANG</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HU-LOWE, Dana D</au><au>ENHONG CHEN</au><au>AMUNDSON, Karin</au><au>SIMON, Ronald</au><au>ERBERSDOBLER, Andreas</au><au>BERGQVIST, Simon</au><au>ZHENG FENG</au><au>SWANSON, Terri A</au><au>SIMMONS, Brett H</au><au>LIPPINCOTT, John</au><au>CASPERSON, Gerald F</au><au>LEVIN, Wendy J</au><au>LIANGLIN ZHANG</au><au>GALLO STAMPINO, Corrado</au><au>SHALINSKY, David R</au><au>FERRARA, Katherine W</au><au>FIEDLER, Walter</au><au>BERTOLINI, Francesco</au><au>WATSON, Katherine D</au><au>MANCUSO, Patrizia</au><au>LAPPIN, Patrick</au><au>WICKMAN, Grant</au><au>CHEN, Jeffrey H</au><au>JIANYING WANG</au><au>XIN JIANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>71</volume><issue>4</issue><spage>1362</spage><epage>1373</epage><pages>1362-1373</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>21212415</pmid><doi>10.1158/0008-5472.can-10-1451</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2011-02, Vol.71 (4), p.1362-1373
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3269003
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Activin Receptors, Type II - antagonists & inhibitors
Angiogenesis Inhibitors - administration & dosage
Angiogenesis Inhibitors - therapeutic use
Animals
Antineoplastic agents
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Biological and medical sciences
Cells, Cultured
Down-Regulation - drug effects
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - genetics
Drug Synergism
Humans
Medical sciences
Mice
Mice, SCID
Molecular Targeted Therapy - methods
Neoplasms - blood supply
Neoplasms - drug therapy
Neoplasms - pathology
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - pathology
Pharmacology. Drug treatments
Signal Transduction - drug effects
Tumors
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Xenograft Model Antitumor Assays
title Targeting Activin Receptor-Like Kinase 1 Inhibits Angiogenesis and Tumorigenesis through a Mechanism of Action Complementary to Anti-VEGF Therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20Activin%20Receptor-Like%20Kinase%201%20Inhibits%20Angiogenesis%20and%20Tumorigenesis%20through%20a%20Mechanism%20of%20Action%20Complementary%20to%20Anti-VEGF%20Therapies&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=HU-LOWE,%20Dana%20D&rft.date=2011-02-15&rft.volume=71&rft.issue=4&rft.spage=1362&rft.epage=1373&rft.pages=1362-1373&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-10-1451&rft_dat=%3Cpubmed_cross%3E21212415%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21212415&rfr_iscdi=true