Neck-motor interactions trigger rotation of the kinesin stalk
Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that rele...
Gespeichert in:
Veröffentlicht in: | Sci. Rep 2012-01, Vol.2 (1), p.236-236, Article 236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 1 |
container_start_page | 236 |
container_title | Sci. Rep |
container_volume | 2 |
creator | Liu, Hong-Lei Pemble IV, Charles W. Endow, Sharyn A. |
description | Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states. |
doi_str_mv | 10.1038/srep00236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3266953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923191106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-9753132b97296ed88917f17cf99abf6e7b106e59a7f5461ce4aed9802fd7454b3</originalsourceid><addsrcrecordid>eNplkU1LXDEUhkNRqowu-gfKxS6kwq35zs1CQaStBdGNXYfczLkzce4k0yQj9N83MnYYNZuEnIf3nORB6BPB3whm3XlOsMKYMvkBHVLMRUsZpXs75wN0nPMjrktQzYn-iA4oZUIorg_RxR24RbuMJabGhwLJuuJjyE1JfjaD1KRY7PNNE4emzKFZ-ADZhyYXOy6O0P5gxwzHL_sE_f7x_eH6pr29__nr-uq2dYLh0molGGG014pqCdOu00QNRLlBa9sPElRPsAShrRoEl8QBtzDVHabDVHHBezZBl5vc1bpfwtRBKMmOZpX80qa_JlpvXleCn5tZfDKMSqkFqwEnm4CYizfZ-QJu7mII4IohWEmhuwqdvnRJ8c8acjFLnx2Mow0Q19loyogmddRKfnlDPsZ1CvULDOm04phIzCv1dUO5FHPVNGwHJtg8uzNbd5X9vPvCLfnfVAXONkCupVDN7LR8l_YPezKiKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897401604</pqid></control><display><type>article</type><title>Neck-motor interactions trigger rotation of the kinesin stalk</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Hong-Lei ; Pemble IV, Charles W. ; Endow, Sharyn A.</creator><creatorcontrib>Liu, Hong-Lei ; Pemble IV, Charles W. ; Endow, Sharyn A. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep00236</identifier><identifier>PMID: 22355749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/607 ; 631/45/607/731 ; Adenosine diphosphate ; Affinity ; Crystal structure ; Crystallography, X-Ray ; Humanities and Social Sciences ; Kinesin ; Kinesins - chemistry ; Kinesins - metabolism ; Kinesins - physiology ; Kinetics ; Microtubules ; Microtubules - metabolism ; Models, Molecular ; Motor task performance ; multidisciplinary ; Neck ; Science ; Stroke</subject><ispartof>Sci. Rep, 2012-01, Vol.2 (1), p.236-236, Article 236</ispartof><rights>The Author(s) 2012</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><rights>Copyright © 2012, Macmillan Publishers Limited. All rights reserved 2012 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-9753132b97296ed88917f17cf99abf6e7b106e59a7f5461ce4aed9802fd7454b3</citedby><cites>FETCH-LOGICAL-c530t-9753132b97296ed88917f17cf99abf6e7b106e59a7f5461ce4aed9802fd7454b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266953/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266953/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22355749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1076598$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Hong-Lei</creatorcontrib><creatorcontrib>Pemble IV, Charles W.</creatorcontrib><creatorcontrib>Endow, Sharyn A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Neck-motor interactions trigger rotation of the kinesin stalk</title><title>Sci. Rep</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states.</description><subject>631/45/607</subject><subject>631/45/607/731</subject><subject>Adenosine diphosphate</subject><subject>Affinity</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Humanities and Social Sciences</subject><subject>Kinesin</subject><subject>Kinesins - chemistry</subject><subject>Kinesins - metabolism</subject><subject>Kinesins - physiology</subject><subject>Kinetics</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Models, Molecular</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Neck</subject><subject>Science</subject><subject>Stroke</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LXDEUhkNRqowu-gfKxS6kwq35zs1CQaStBdGNXYfczLkzce4k0yQj9N83MnYYNZuEnIf3nORB6BPB3whm3XlOsMKYMvkBHVLMRUsZpXs75wN0nPMjrktQzYn-iA4oZUIorg_RxR24RbuMJabGhwLJuuJjyE1JfjaD1KRY7PNNE4emzKFZ-ADZhyYXOy6O0P5gxwzHL_sE_f7x_eH6pr29__nr-uq2dYLh0molGGG014pqCdOu00QNRLlBa9sPElRPsAShrRoEl8QBtzDVHabDVHHBezZBl5vc1bpfwtRBKMmOZpX80qa_JlpvXleCn5tZfDKMSqkFqwEnm4CYizfZ-QJu7mII4IohWEmhuwqdvnRJ8c8acjFLnx2Mow0Q19loyogmddRKfnlDPsZ1CvULDOm04phIzCv1dUO5FHPVNGwHJtg8uzNbd5X9vPvCLfnfVAXONkCupVDN7LR8l_YPezKiKA</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Liu, Hong-Lei</creator><creator>Pemble IV, Charles W.</creator><creator>Endow, Sharyn A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20120127</creationdate><title>Neck-motor interactions trigger rotation of the kinesin stalk</title><author>Liu, Hong-Lei ; Pemble IV, Charles W. ; Endow, Sharyn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-9753132b97296ed88917f17cf99abf6e7b106e59a7f5461ce4aed9802fd7454b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/45/607</topic><topic>631/45/607/731</topic><topic>Adenosine diphosphate</topic><topic>Affinity</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Humanities and Social Sciences</topic><topic>Kinesin</topic><topic>Kinesins - chemistry</topic><topic>Kinesins - metabolism</topic><topic>Kinesins - physiology</topic><topic>Kinetics</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Models, Molecular</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Neck</topic><topic>Science</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hong-Lei</creatorcontrib><creatorcontrib>Pemble IV, Charles W.</creatorcontrib><creatorcontrib>Endow, Sharyn A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sci. Rep</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hong-Lei</au><au>Pemble IV, Charles W.</au><au>Endow, Sharyn A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neck-motor interactions trigger rotation of the kinesin stalk</atitle><jtitle>Sci. Rep</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2012-01-27</date><risdate>2012</risdate><volume>2</volume><issue>1</issue><spage>236</spage><epage>236</epage><pages>236-236</pages><artnum>236</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated – neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation – the force-producing stroke – to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22355749</pmid><doi>10.1038/srep00236</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Sci. Rep, 2012-01, Vol.2 (1), p.236-236, Article 236 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3266953 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/45/607 631/45/607/731 Adenosine diphosphate Affinity Crystal structure Crystallography, X-Ray Humanities and Social Sciences Kinesin Kinesins - chemistry Kinesins - metabolism Kinesins - physiology Kinetics Microtubules Microtubules - metabolism Models, Molecular Motor task performance multidisciplinary Neck Science Stroke |
title | Neck-motor interactions trigger rotation of the kinesin stalk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neck-motor%20interactions%20trigger%20rotation%20of%20the%20kinesin%20stalk&rft.jtitle=Sci.%20Rep&rft.au=Liu,%20Hong-Lei&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-01-27&rft.volume=2&rft.issue=1&rft.spage=236&rft.epage=236&rft.pages=236-236&rft.artnum=236&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep00236&rft_dat=%3Cproquest_pubme%3E923191106%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897401604&rft_id=info:pmid/22355749&rfr_iscdi=true |