Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers

Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2012-02, Vol.25 (1), p.37-42
Hauptverfasser: Kahn, Charles E., Kalpathy-Cramer, Jayashree, Lam, Cesar A., Eldredge, Christina E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 37
container_title Journal of digital imaging
container_volume 25
creator Kahn, Charles E.
Kalpathy-Cramer, Jayashree
Lam, Cesar A.
Eldredge, Christina E.
description Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images ( F score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images ( F score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.
doi_str_mv 10.1007/s10278-011-9399-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3264729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568281091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Gv1B7gxEze6QTl8DLAxaa-1NqlxUxN3hGHgSjPDVJgx9t-X8db6keiKwHnOA4cXoadAXgEh8nUBQqXCBABrpjUW99AGWlBYUvn5PtoQpSUGpfQBelTKJSEgheQP0QEFyRUHtkH2yLkl29k3b_3s8xiTneOUmik0Z6PdxbRrPky9HeJ83Sxl3drUnKTix27wK3Xhv8-4HvY_eI-PbfF9sx1sKTFEn8tj9CDYofgnt-sh-vTu5GL7Hp9_PD3bHp1jJwjM2LWM0Y4TC53lMgTdKS5Up4KwnQu6Da4O03veSusE9a1wjkLgoIAxy5Vlh-jN3nu1dKPvnU9ztoO5ynG0-dpMNpo_Kyl-Mbvpm2G05ZLqKnhxK8jT18WX2YyxOD8MNvlpKUaDVEKwllby5X9JIKBbJjQnFX3-F3o5LTnVj1h9jErOVx_sIZenUrIPd68GYtakzT5pU5M2a9JG1J5nv4971_Ez2grQPVBqKe18_nXzv603U3G0Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917327442</pqid></control><display><type>article</type><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</creator><creatorcontrib>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</creatorcontrib><description>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images ( F score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images ( F score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-011-9399-5</identifier><identifier>PMID: 21748413</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Classifiers ; Confidence intervals ; Diagnostic Imaging - classification ; Diagnostic Imaging - methods ; Humans ; Image Interpretation, Computer-Assisted ; Imaging ; Information Storage and Retrieval ; Magnetic Resonance Imaging - classification ; Medicine ; Medicine &amp; Public Health ; Pattern Recognition, Automated ; Periodicals as Topic - classification ; Positron-Emission Tomography - classification ; Radiography - classification ; Radiology ; Recall ; Reference Standards ; Retrieval ; Sensitivity and Specificity ; Tomography ; Tomography, X-Ray Computed - methods ; Ultrasonography - classification</subject><ispartof>Journal of digital imaging, 2012-02, Vol.25 (1), p.37-42</ispartof><rights>Society for Imaging Informatics in Medicine 2011</rights><rights>Society for Imaging Informatics in Medicine 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</citedby><cites>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264729/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21748413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lam, Cesar A.</creatorcontrib><creatorcontrib>Eldredge, Christina E.</creatorcontrib><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images ( F score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images ( F score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Confidence intervals</subject><subject>Diagnostic Imaging - classification</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Imaging</subject><subject>Information Storage and Retrieval</subject><subject>Magnetic Resonance Imaging - classification</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pattern Recognition, Automated</subject><subject>Periodicals as Topic - classification</subject><subject>Positron-Emission Tomography - classification</subject><subject>Radiography - classification</subject><subject>Radiology</subject><subject>Recall</subject><subject>Reference Standards</subject><subject>Retrieval</subject><subject>Sensitivity and Specificity</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasonography - classification</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Gv1B7gxEze6QTl8DLAxaa-1NqlxUxN3hGHgSjPDVJgx9t-X8db6keiKwHnOA4cXoadAXgEh8nUBQqXCBABrpjUW99AGWlBYUvn5PtoQpSUGpfQBelTKJSEgheQP0QEFyRUHtkH2yLkl29k3b_3s8xiTneOUmik0Z6PdxbRrPky9HeJ83Sxl3drUnKTix27wK3Xhv8-4HvY_eI-PbfF9sx1sKTFEn8tj9CDYofgnt-sh-vTu5GL7Hp9_PD3bHp1jJwjM2LWM0Y4TC53lMgTdKS5Up4KwnQu6Da4O03veSusE9a1wjkLgoIAxy5Vlh-jN3nu1dKPvnU9ztoO5ynG0-dpMNpo_Kyl-Mbvpm2G05ZLqKnhxK8jT18WX2YyxOD8MNvlpKUaDVEKwllby5X9JIKBbJjQnFX3-F3o5LTnVj1h9jErOVx_sIZenUrIPd68GYtakzT5pU5M2a9JG1J5nv4971_Ez2grQPVBqKe18_nXzv603U3G0Pw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kahn, Charles E.</creator><creator>Kalpathy-Cramer, Jayashree</creator><creator>Lam, Cesar A.</creator><creator>Eldredge, Christina E.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><author>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Confidence intervals</topic><topic>Diagnostic Imaging - classification</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Imaging</topic><topic>Information Storage and Retrieval</topic><topic>Magnetic Resonance Imaging - classification</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pattern Recognition, Automated</topic><topic>Periodicals as Topic - classification</topic><topic>Positron-Emission Tomography - classification</topic><topic>Radiography - classification</topic><topic>Radiology</topic><topic>Recall</topic><topic>Reference Standards</topic><topic>Retrieval</topic><topic>Sensitivity and Specificity</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasonography - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lam, Cesar A.</creatorcontrib><creatorcontrib>Eldredge, Christina E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahn, Charles E.</au><au>Kalpathy-Cramer, Jayashree</au><au>Lam, Cesar A.</au><au>Eldredge, Christina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>25</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images ( F score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images ( F score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>21748413</pmid><doi>10.1007/s10278-011-9399-5</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2012-02, Vol.25 (1), p.37-42
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3264729
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Classifiers
Confidence intervals
Diagnostic Imaging - classification
Diagnostic Imaging - methods
Humans
Image Interpretation, Computer-Assisted
Imaging
Information Storage and Retrieval
Magnetic Resonance Imaging - classification
Medicine
Medicine & Public Health
Pattern Recognition, Automated
Periodicals as Topic - classification
Positron-Emission Tomography - classification
Radiography - classification
Radiology
Recall
Reference Standards
Retrieval
Sensitivity and Specificity
Tomography
Tomography, X-Ray Computed - methods
Ultrasonography - classification
title Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Determination%20of%20Imaging%20Modality%20using%20an%20Ensemble%20of%20Text-%20and%20Image-Based%20Classifiers&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Kahn,%20Charles%20E.&rft.date=2012-02-01&rft.volume=25&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-011-9399-5&rft_dat=%3Cproquest_pubme%3E2568281091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917327442&rft_id=info:pmid/21748413&rfr_iscdi=true