Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers
Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers ana...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2012-02, Vol.25 (1), p.37-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Journal of digital imaging |
container_volume | 25 |
creator | Kahn, Charles E. Kalpathy-Cramer, Jayashree Lam, Cesar A. Eldredge, Christina E. |
description | Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (
F
score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images (
F
score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval. |
doi_str_mv | 10.1007/s10278-011-9399-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3264729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568281091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Gv1B7gxEze6QTl8DLAxaa-1NqlxUxN3hGHgSjPDVJgx9t-X8db6keiKwHnOA4cXoadAXgEh8nUBQqXCBABrpjUW99AGWlBYUvn5PtoQpSUGpfQBelTKJSEgheQP0QEFyRUHtkH2yLkl29k3b_3s8xiTneOUmik0Z6PdxbRrPky9HeJ83Sxl3drUnKTix27wK3Xhv8-4HvY_eI-PbfF9sx1sKTFEn8tj9CDYofgnt-sh-vTu5GL7Hp9_PD3bHp1jJwjM2LWM0Y4TC53lMgTdKS5Up4KwnQu6Da4O03veSusE9a1wjkLgoIAxy5Vlh-jN3nu1dKPvnU9ztoO5ynG0-dpMNpo_Kyl-Mbvpm2G05ZLqKnhxK8jT18WX2YyxOD8MNvlpKUaDVEKwllby5X9JIKBbJjQnFX3-F3o5LTnVj1h9jErOVx_sIZenUrIPd68GYtakzT5pU5M2a9JG1J5nv4971_Ez2grQPVBqKe18_nXzv603U3G0Pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917327442</pqid></control><display><type>article</type><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</creator><creatorcontrib>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</creatorcontrib><description>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (
F
score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images (
F
score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-011-9399-5</identifier><identifier>PMID: 21748413</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Classifiers ; Confidence intervals ; Diagnostic Imaging - classification ; Diagnostic Imaging - methods ; Humans ; Image Interpretation, Computer-Assisted ; Imaging ; Information Storage and Retrieval ; Magnetic Resonance Imaging - classification ; Medicine ; Medicine & Public Health ; Pattern Recognition, Automated ; Periodicals as Topic - classification ; Positron-Emission Tomography - classification ; Radiography - classification ; Radiology ; Recall ; Reference Standards ; Retrieval ; Sensitivity and Specificity ; Tomography ; Tomography, X-Ray Computed - methods ; Ultrasonography - classification</subject><ispartof>Journal of digital imaging, 2012-02, Vol.25 (1), p.37-42</ispartof><rights>Society for Imaging Informatics in Medicine 2011</rights><rights>Society for Imaging Informatics in Medicine 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</citedby><cites>FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264729/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264729/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21748413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lam, Cesar A.</creatorcontrib><creatorcontrib>Eldredge, Christina E.</creatorcontrib><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (
F
score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images (
F
score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Confidence intervals</subject><subject>Diagnostic Imaging - classification</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Imaging</subject><subject>Information Storage and Retrieval</subject><subject>Magnetic Resonance Imaging - classification</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Pattern Recognition, Automated</subject><subject>Periodicals as Topic - classification</subject><subject>Positron-Emission Tomography - classification</subject><subject>Radiography - classification</subject><subject>Radiology</subject><subject>Recall</subject><subject>Reference Standards</subject><subject>Retrieval</subject><subject>Sensitivity and Specificity</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasonography - classification</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Gv1B7gxEze6QTl8DLAxaa-1NqlxUxN3hGHgSjPDVJgx9t-X8db6keiKwHnOA4cXoadAXgEh8nUBQqXCBABrpjUW99AGWlBYUvn5PtoQpSUGpfQBelTKJSEgheQP0QEFyRUHtkH2yLkl29k3b_3s8xiTneOUmik0Z6PdxbRrPky9HeJ83Sxl3drUnKTix27wK3Xhv8-4HvY_eI-PbfF9sx1sKTFEn8tj9CDYofgnt-sh-vTu5GL7Hp9_PD3bHp1jJwjM2LWM0Y4TC53lMgTdKS5Up4KwnQu6Da4O03veSusE9a1wjkLgoIAxy5Vlh-jN3nu1dKPvnU9ztoO5ynG0-dpMNpo_Kyl-Mbvpm2G05ZLqKnhxK8jT18WX2YyxOD8MNvlpKUaDVEKwllby5X9JIKBbJjQnFX3-F3o5LTnVj1h9jErOVx_sIZenUrIPd68GYtakzT5pU5M2a9JG1J5nv4971_Ez2grQPVBqKe18_nXzv603U3G0Pw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kahn, Charles E.</creator><creator>Kalpathy-Cramer, Jayashree</creator><creator>Lam, Cesar A.</creator><creator>Eldredge, Christina E.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</title><author>Kahn, Charles E. ; Kalpathy-Cramer, Jayashree ; Lam, Cesar A. ; Eldredge, Christina E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c6332b40a1ba47ff9b8458b8f5abcf96fc897de467ac52e65cc21f418133a48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Confidence intervals</topic><topic>Diagnostic Imaging - classification</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Imaging</topic><topic>Information Storage and Retrieval</topic><topic>Magnetic Resonance Imaging - classification</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Pattern Recognition, Automated</topic><topic>Periodicals as Topic - classification</topic><topic>Positron-Emission Tomography - classification</topic><topic>Radiography - classification</topic><topic>Radiology</topic><topic>Recall</topic><topic>Reference Standards</topic><topic>Retrieval</topic><topic>Sensitivity and Specificity</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasonography - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahn, Charles E.</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Lam, Cesar A.</creatorcontrib><creatorcontrib>Eldredge, Christina E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahn, Charles E.</au><au>Kalpathy-Cramer, Jayashree</au><au>Lam, Cesar A.</au><au>Eldredge, Christina E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>25</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (
F
score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images (
F
score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>21748413</pmid><doi>10.1007/s10278-011-9399-5</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2012-02, Vol.25 (1), p.37-42 |
issn | 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3264729 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Algorithms Classifiers Confidence intervals Diagnostic Imaging - classification Diagnostic Imaging - methods Humans Image Interpretation, Computer-Assisted Imaging Information Storage and Retrieval Magnetic Resonance Imaging - classification Medicine Medicine & Public Health Pattern Recognition, Automated Periodicals as Topic - classification Positron-Emission Tomography - classification Radiography - classification Radiology Recall Reference Standards Retrieval Sensitivity and Specificity Tomography Tomography, X-Ray Computed - methods Ultrasonography - classification |
title | Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Determination%20of%20Imaging%20Modality%20using%20an%20Ensemble%20of%20Text-%20and%20Image-Based%20Classifiers&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Kahn,%20Charles%20E.&rft.date=2012-02-01&rft.volume=25&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-011-9399-5&rft_dat=%3Cproquest_pubme%3E2568281091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917327442&rft_id=info:pmid/21748413&rfr_iscdi=true |