Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes

J. Neurochem. (2010) 115, 1409-1420. ABSTRACT: Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2010-12, Vol.115 (6), p.1409-1420
Hauptverfasser: Jang, Sung-Wook, Srinivasan, Rajini, Jones, Erin A, Sun, Guannan, Keles, Sunduz, Krueger, Courtney, Chang, Li-Wei, Nagarajan, Rakesh, Svaren, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1420
container_issue 6
container_start_page 1409
container_title Journal of neurochemistry
container_volume 115
creator Jang, Sung-Wook
Srinivasan, Rajini
Jones, Erin A
Sun, Guannan
Keles, Sunduz
Krueger, Courtney
Chang, Li-Wei
Nagarajan, Rakesh
Svaren, John
description J. Neurochem. (2010) 115, 1409-1420. ABSTRACT: Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism by which Egr2 regulates gene expression during myelination, we have performed chromatin immunoprecipitation analysis on myelinating rat sciatic nerve in vivo. The resulting samples were applied to a tiled microarray consisting of a broad spectrum of genes that are activated or repressed in Egr2-deficient mice. The results show extensive binding within myelin-associated genes, as well as some genes that become repressed in myelinating Schwann cells. Many of the Egr2 peaks coincide with regions of open chromatin, which is a marker of enhancer regions. In addition, further analysis showed that there is substantial colocalization of Egr2 binding with Sox10, a transcription factor required for Schwann cell specification and other stages of Schwann cell development. Finally, we have found that Egr2 binds to promoters of several lipid biosynthetic genes, which is consistent with their dramatic up-regulation during the formation of lipid-rich myelin. Overall, this analysis provides a locus-wide profile of Egr2 binding patterns in major myelin-associated genes using myelinating peripheral nerve.
doi_str_mv 10.1111/j.1471-4159.2010.07045.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3260055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201751021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6525-c3f86c61ab0817753424b6f77133e1fcacd41189b008657e811c34489bb3fd483</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EYsvCX4AICXFK12M7jnsACVXL11ZwgD1bjmsHV2m82Anb_nsmtJSPC1iybI2fdzwzLyEF0DngutjMQdRQCqgWc0YxSmsqqvnuDpmdHu6SGaWMlZwKdkYe5LyhFKSQcJ-cMaBCoGZGrlbRjrm8DWtX4O6H4IM1Q4h9EX1x2SZ2cZXijtEiuXbszBDTvhhMat2Qi9AX273r8Ghd7_JDcs-bLrtHx_OcXL--_Lx8W64-vnm3fLUqraxYVVrulbQSTEMV1HXFBRON9HUNnDvw1ti1AFCLhlIlq9opAMuFwEDD_Voofk5eHvLejM3WrS1WnUynb1LYmrTX0QT950sfvug2ftOcSUqrChM8PyZI8evo8qC3IVvXdaZ3ccxaVbKulWDy3yQoQTmIBZJP_yI3cUw9zgGhimE_C4qQOkA2xZyT86eigerJWb3Rk4F6MlBPzuofzuodSh__3vRJ-NNKBJ4dAZOt6XwyvQ35F8cln-aJ3IsDdxs6t__vAvT7D8vphvonB703UZs24R_Xn5DkFBag0Ez-HdJfxkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815218990</pqid></control><display><type>article</type><title>Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jang, Sung-Wook ; Srinivasan, Rajini ; Jones, Erin A ; Sun, Guannan ; Keles, Sunduz ; Krueger, Courtney ; Chang, Li-Wei ; Nagarajan, Rakesh ; Svaren, John</creator><creatorcontrib>Jang, Sung-Wook ; Srinivasan, Rajini ; Jones, Erin A ; Sun, Guannan ; Keles, Sunduz ; Krueger, Courtney ; Chang, Li-Wei ; Nagarajan, Rakesh ; Svaren, John</creatorcontrib><description>J. Neurochem. (2010) 115, 1409-1420. ABSTRACT: Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism by which Egr2 regulates gene expression during myelination, we have performed chromatin immunoprecipitation analysis on myelinating rat sciatic nerve in vivo. The resulting samples were applied to a tiled microarray consisting of a broad spectrum of genes that are activated or repressed in Egr2-deficient mice. The results show extensive binding within myelin-associated genes, as well as some genes that become repressed in myelinating Schwann cells. Many of the Egr2 peaks coincide with regions of open chromatin, which is a marker of enhancer regions. In addition, further analysis showed that there is substantial colocalization of Egr2 binding with Sox10, a transcription factor required for Schwann cell specification and other stages of Schwann cell development. Finally, we have found that Egr2 binds to promoters of several lipid biosynthetic genes, which is consistent with their dramatic up-regulation during the formation of lipid-rich myelin. Overall, this analysis provides a locus-wide profile of Egr2 binding patterns in major myelin-associated genes using myelinating peripheral nerve.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2010.07045.x</identifier><identifier>PMID: 21044070</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Newborn ; Binding sites ; Biological and medical sciences ; Cell Line, Tumor ; Cellular biology ; ChIP ; Chromatin ; DNA microarrays ; Early Growth Response Protein 2 - genetics ; Early Growth Response Protein 2 - metabolism ; EGR-2 protein ; Enhancers ; Ether-A-Go-Go Potassium Channels - genetics ; Ether-A-Go-Go Potassium Channels - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation - physiology ; Gene Targeting - methods ; Genes. Genome ; Genetic Loci - genetics ; Immunoprecipitation ; Krox-20 protein ; Krox20 ; Lipids ; Melanoma, Experimental - genetics ; Mice ; Molecular and cellular biology ; Molecular genetics ; Myelin Sheath - genetics ; Myelin Sheath - metabolism ; Myelination ; Neurochemistry ; Neurons ; Peripheral nerves ; Promoters ; Rats ; Rats, Sprague-Dawley ; Schwann ; Schwann cells ; Sciatic nerve ; Sciatic Nerve - physiology ; Sox10 protein ; Transcription factors ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Journal of neurochemistry, 2010-12, Vol.115 (6), p.1409-1420</ispartof><rights>2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6525-c3f86c61ab0817753424b6f77133e1fcacd41189b008657e811c34489bb3fd483</citedby><cites>FETCH-LOGICAL-c6525-c3f86c61ab0817753424b6f77133e1fcacd41189b008657e811c34489bb3fd483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2010.07045.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2010.07045.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1413,1429,27906,27907,45556,45557,46391,46815</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23630865$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21044070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Sung-Wook</creatorcontrib><creatorcontrib>Srinivasan, Rajini</creatorcontrib><creatorcontrib>Jones, Erin A</creatorcontrib><creatorcontrib>Sun, Guannan</creatorcontrib><creatorcontrib>Keles, Sunduz</creatorcontrib><creatorcontrib>Krueger, Courtney</creatorcontrib><creatorcontrib>Chang, Li-Wei</creatorcontrib><creatorcontrib>Nagarajan, Rakesh</creatorcontrib><creatorcontrib>Svaren, John</creatorcontrib><title>Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2010) 115, 1409-1420. ABSTRACT: Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism by which Egr2 regulates gene expression during myelination, we have performed chromatin immunoprecipitation analysis on myelinating rat sciatic nerve in vivo. The resulting samples were applied to a tiled microarray consisting of a broad spectrum of genes that are activated or repressed in Egr2-deficient mice. The results show extensive binding within myelin-associated genes, as well as some genes that become repressed in myelinating Schwann cells. Many of the Egr2 peaks coincide with regions of open chromatin, which is a marker of enhancer regions. In addition, further analysis showed that there is substantial colocalization of Egr2 binding with Sox10, a transcription factor required for Schwann cell specification and other stages of Schwann cell development. Finally, we have found that Egr2 binds to promoters of several lipid biosynthetic genes, which is consistent with their dramatic up-regulation during the formation of lipid-rich myelin. Overall, this analysis provides a locus-wide profile of Egr2 binding patterns in major myelin-associated genes using myelinating peripheral nerve.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Cellular biology</subject><subject>ChIP</subject><subject>Chromatin</subject><subject>DNA microarrays</subject><subject>Early Growth Response Protein 2 - genetics</subject><subject>Early Growth Response Protein 2 - metabolism</subject><subject>EGR-2 protein</subject><subject>Enhancers</subject><subject>Ether-A-Go-Go Potassium Channels - genetics</subject><subject>Ether-A-Go-Go Potassium Channels - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Gene Targeting - methods</subject><subject>Genes. Genome</subject><subject>Genetic Loci - genetics</subject><subject>Immunoprecipitation</subject><subject>Krox-20 protein</subject><subject>Krox20</subject><subject>Lipids</subject><subject>Melanoma, Experimental - genetics</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Myelin Sheath - genetics</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Neurochemistry</subject><subject>Neurons</subject><subject>Peripheral nerves</subject><subject>Promoters</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Schwann</subject><subject>Schwann cells</subject><subject>Sciatic nerve</subject><subject>Sciatic Nerve - physiology</subject><subject>Sox10 protein</subject><subject>Transcription factors</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2P0zAQhi0EYsvCX4AICXFK12M7jnsACVXL11ZwgD1bjmsHV2m82Anb_nsmtJSPC1iybI2fdzwzLyEF0DngutjMQdRQCqgWc0YxSmsqqvnuDpmdHu6SGaWMlZwKdkYe5LyhFKSQcJ-cMaBCoGZGrlbRjrm8DWtX4O6H4IM1Q4h9EX1x2SZ2cZXijtEiuXbszBDTvhhMat2Qi9AX273r8Ghd7_JDcs-bLrtHx_OcXL--_Lx8W64-vnm3fLUqraxYVVrulbQSTEMV1HXFBRON9HUNnDvw1ti1AFCLhlIlq9opAMuFwEDD_Voofk5eHvLejM3WrS1WnUynb1LYmrTX0QT950sfvug2ftOcSUqrChM8PyZI8evo8qC3IVvXdaZ3ccxaVbKulWDy3yQoQTmIBZJP_yI3cUw9zgGhimE_C4qQOkA2xZyT86eigerJWb3Rk4F6MlBPzuofzuodSh__3vRJ-NNKBJ4dAZOt6XwyvQ35F8cln-aJ3IsDdxs6t__vAvT7D8vphvonB703UZs24R_Xn5DkFBag0Ez-HdJfxkQ</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Jang, Sung-Wook</creator><creator>Srinivasan, Rajini</creator><creator>Jones, Erin A</creator><creator>Sun, Guannan</creator><creator>Keles, Sunduz</creator><creator>Krueger, Courtney</creator><creator>Chang, Li-Wei</creator><creator>Nagarajan, Rakesh</creator><creator>Svaren, John</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201012</creationdate><title>Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes</title><author>Jang, Sung-Wook ; Srinivasan, Rajini ; Jones, Erin A ; Sun, Guannan ; Keles, Sunduz ; Krueger, Courtney ; Chang, Li-Wei ; Nagarajan, Rakesh ; Svaren, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6525-c3f86c61ab0817753424b6f77133e1fcacd41189b008657e811c34489bb3fd483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Cellular biology</topic><topic>ChIP</topic><topic>Chromatin</topic><topic>DNA microarrays</topic><topic>Early Growth Response Protein 2 - genetics</topic><topic>Early Growth Response Protein 2 - metabolism</topic><topic>EGR-2 protein</topic><topic>Enhancers</topic><topic>Ether-A-Go-Go Potassium Channels - genetics</topic><topic>Ether-A-Go-Go Potassium Channels - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Gene Targeting - methods</topic><topic>Genes. Genome</topic><topic>Genetic Loci - genetics</topic><topic>Immunoprecipitation</topic><topic>Krox-20 protein</topic><topic>Krox20</topic><topic>Lipids</topic><topic>Melanoma, Experimental - genetics</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Myelin Sheath - genetics</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Neurochemistry</topic><topic>Neurons</topic><topic>Peripheral nerves</topic><topic>Promoters</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Schwann</topic><topic>Schwann cells</topic><topic>Sciatic nerve</topic><topic>Sciatic Nerve - physiology</topic><topic>Sox10 protein</topic><topic>Transcription factors</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Sung-Wook</creatorcontrib><creatorcontrib>Srinivasan, Rajini</creatorcontrib><creatorcontrib>Jones, Erin A</creatorcontrib><creatorcontrib>Sun, Guannan</creatorcontrib><creatorcontrib>Keles, Sunduz</creatorcontrib><creatorcontrib>Krueger, Courtney</creatorcontrib><creatorcontrib>Chang, Li-Wei</creatorcontrib><creatorcontrib>Nagarajan, Rakesh</creatorcontrib><creatorcontrib>Svaren, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Sung-Wook</au><au>Srinivasan, Rajini</au><au>Jones, Erin A</au><au>Sun, Guannan</au><au>Keles, Sunduz</au><au>Krueger, Courtney</au><au>Chang, Li-Wei</au><au>Nagarajan, Rakesh</au><au>Svaren, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>6</issue><spage>1409</spage><epage>1420</epage><pages>1409-1420</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>J. Neurochem. (2010) 115, 1409-1420. ABSTRACT: Myelination of peripheral nerves by Schwann cells depends upon a gene regulatory network controlled by early growth response Egr2/Krox20, which is specifically required for Schwann cells to initiate and maintain myelination. To elucidate the mechanism by which Egr2 regulates gene expression during myelination, we have performed chromatin immunoprecipitation analysis on myelinating rat sciatic nerve in vivo. The resulting samples were applied to a tiled microarray consisting of a broad spectrum of genes that are activated or repressed in Egr2-deficient mice. The results show extensive binding within myelin-associated genes, as well as some genes that become repressed in myelinating Schwann cells. Many of the Egr2 peaks coincide with regions of open chromatin, which is a marker of enhancer regions. In addition, further analysis showed that there is substantial colocalization of Egr2 binding with Sox10, a transcription factor required for Schwann cell specification and other stages of Schwann cell development. Finally, we have found that Egr2 binds to promoters of several lipid biosynthetic genes, which is consistent with their dramatic up-regulation during the formation of lipid-rich myelin. Overall, this analysis provides a locus-wide profile of Egr2 binding patterns in major myelin-associated genes using myelinating peripheral nerve.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21044070</pmid><doi>10.1111/j.1471-4159.2010.07045.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2010-12, Vol.115 (6), p.1409-1420
issn 0022-3042
1471-4159
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3260055
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Animals
Animals, Newborn
Binding sites
Biological and medical sciences
Cell Line, Tumor
Cellular biology
ChIP
Chromatin
DNA microarrays
Early Growth Response Protein 2 - genetics
Early Growth Response Protein 2 - metabolism
EGR-2 protein
Enhancers
Ether-A-Go-Go Potassium Channels - genetics
Ether-A-Go-Go Potassium Channels - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation - physiology
Gene Targeting - methods
Genes. Genome
Genetic Loci - genetics
Immunoprecipitation
Krox-20 protein
Krox20
Lipids
Melanoma, Experimental - genetics
Mice
Molecular and cellular biology
Molecular genetics
Myelin Sheath - genetics
Myelin Sheath - metabolism
Myelination
Neurochemistry
Neurons
Peripheral nerves
Promoters
Rats
Rats, Sprague-Dawley
Schwann
Schwann cells
Sciatic nerve
Sciatic Nerve - physiology
Sox10 protein
Transcription factors
Transcription. Transcription factor. Splicing. Rna processing
title Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locus-wide%20identification%20of%20Egr2/Krox20%20regulatory%20targets%20in%20myelin%20genes&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Jang,%20Sung-Wook&rft.date=2010-12&rft.volume=115&rft.issue=6&rft.spage=1409&rft.epage=1420&rft.pages=1409-1420&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2010.07045.x&rft_dat=%3Cproquest_pubme%3E2201751021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815218990&rft_id=info:pmid/21044070&rfr_iscdi=true