Identification of MCI individuals using structural and functional connectivity networks

Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2012-02, Vol.59 (3), p.2045-2056
Hauptverfasser: Wee, Chong-Yaw, Yap, Pew-Thian, Zhang, Daoqiang, Denny, Kevin, Browndyke, Jeffrey N., Potter, Guy G., Welsh-Bohmer, Kathleen A., Wang, Lihong, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2056
container_issue 3
container_start_page 2045
container_title NeuroImage (Orlando, Fla.)
container_volume 59
creator Wee, Chong-Yaw
Yap, Pew-Thian
Zhang, Daoqiang
Denny, Kevin
Browndyke, Jeffrey N.
Potter, Guy G.
Welsh-Bohmer, Kathleen A.
Wang, Lihong
Shen, Dinggang
description Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.
doi_str_mv 10.1016/j.neuroimage.2011.10.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3254811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811911011761</els_id><sourcerecordid>926892101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</originalsourceid><addsrcrecordid>eNqNUsuOEzEQHCEQ-4BfQCNx4DTB7RnH9gUJImAjLeIC4mjN2u3gkNiLPQ7av6dHWZbHZTn50VVld3U1TQtsAQyWL7eLiDWnsB83uOAMgK4XDMSD5hSYFp0Wkj-c96LvFIA-ac5K2TLGNAzqcXPCiaOV6k-bL2uHcQo-2HEKKbbJtx9W6zZEFw7B1XFX2lpC3LRlytVONY-7doyu9TXamUBHm2JEOhzCdNNGnH6k_K08aR55IuPT2_W8-fzu7afVRXf58f169fqys0KyqRMAbuBCWe0Ulyhk7wfJPfZODm6UGp1nnApOXS2XowfUzA7cggPNmGW-P29eHXWv69UenaVm6IvmOpM3-cakMZi_KzF8NZt0MD0XA1lDAi9uBXL6XrFMZh-Kxd1ujJhqMZovlebk-n8hFVO6vx8JoldCgSTk83-Q21QzuVoMiEH2QJKznjqibE6lZPR3_QEzcyDM1vwOhJkDMVcoEER99qc_d8RfCSDAmyMAaUqHgNkUGzBadCHTVI1L4f5XfgJQ8M3H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547316883</pqid></control><display><type>article</type><title>Identification of MCI individuals using structural and functional connectivity networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</creator><creatorcontrib>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</creatorcontrib><description>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.10.015</identifier><identifier>PMID: 22019883</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Algorithms ; Alzheimer's disease ; Alzheimer's disease (AD) ; Artificial Intelligence ; Brain ; Brain - pathology ; Brain network analysis multiple-kernel Support Vector Machines (SVMs) ; Classification ; Cluster Analysis ; Cognitive ability ; Cognitive Dysfunction - diagnosis ; Cognitive Dysfunction - pathology ; Cohort Studies ; Data Interpretation, Statistical ; Diffusion Tensor Imaging ; Diffusion tensor imaging (DTI) ; Educational Status ; Female ; Humans ; Image Processing, Computer-Assisted ; Linear Models ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Memory ; Middle Aged ; Mild cognitive impairment (MCI) ; Multimodality representation ; Nerve Net - pathology ; Neural Pathways - pathology ; Neuropsychological Tests ; NMR ; Nonlinear Dynamics ; Nuclear magnetic resonance ; Reproducibility of Results ; Resting-state functional magnetic resonance imaging (rs-fMRI) ; ROC Curve ; Support Vector Machine</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2045-2056</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2012</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</citedby><cites>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1547316883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22019883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wee, Chong-Yaw</creatorcontrib><creatorcontrib>Yap, Pew-Thian</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Denny, Kevin</creatorcontrib><creatorcontrib>Browndyke, Jeffrey N.</creatorcontrib><creatorcontrib>Potter, Guy G.</creatorcontrib><creatorcontrib>Welsh-Bohmer, Kathleen A.</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>Identification of MCI individuals using structural and functional connectivity networks</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Alzheimer's disease (AD)</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain network analysis multiple-kernel Support Vector Machines (SVMs)</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cohort Studies</subject><subject>Data Interpretation, Statistical</subject><subject>Diffusion Tensor Imaging</subject><subject>Diffusion tensor imaging (DTI)</subject><subject>Educational Status</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory</subject><subject>Middle Aged</subject><subject>Mild cognitive impairment (MCI)</subject><subject>Multimodality representation</subject><subject>Nerve Net - pathology</subject><subject>Neural Pathways - pathology</subject><subject>Neuropsychological Tests</subject><subject>NMR</subject><subject>Nonlinear Dynamics</subject><subject>Nuclear magnetic resonance</subject><subject>Reproducibility of Results</subject><subject>Resting-state functional magnetic resonance imaging (rs-fMRI)</subject><subject>ROC Curve</subject><subject>Support Vector Machine</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUsuOEzEQHCEQ-4BfQCNx4DTB7RnH9gUJImAjLeIC4mjN2u3gkNiLPQ7av6dHWZbHZTn50VVld3U1TQtsAQyWL7eLiDWnsB83uOAMgK4XDMSD5hSYFp0Wkj-c96LvFIA-ac5K2TLGNAzqcXPCiaOV6k-bL2uHcQo-2HEKKbbJtx9W6zZEFw7B1XFX2lpC3LRlytVONY-7doyu9TXamUBHm2JEOhzCdNNGnH6k_K08aR55IuPT2_W8-fzu7afVRXf58f169fqys0KyqRMAbuBCWe0Ulyhk7wfJPfZODm6UGp1nnApOXS2XowfUzA7cggPNmGW-P29eHXWv69UenaVm6IvmOpM3-cakMZi_KzF8NZt0MD0XA1lDAi9uBXL6XrFMZh-Kxd1ujJhqMZovlebk-n8hFVO6vx8JoldCgSTk83-Q21QzuVoMiEH2QJKznjqibE6lZPR3_QEzcyDM1vwOhJkDMVcoEER99qc_d8RfCSDAmyMAaUqHgNkUGzBadCHTVI1L4f5XfgJQ8M3H</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Wee, Chong-Yaw</creator><creator>Yap, Pew-Thian</creator><creator>Zhang, Daoqiang</creator><creator>Denny, Kevin</creator><creator>Browndyke, Jeffrey N.</creator><creator>Potter, Guy G.</creator><creator>Welsh-Bohmer, Kathleen A.</creator><creator>Wang, Lihong</creator><creator>Shen, Dinggang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Identification of MCI individuals using structural and functional connectivity networks</title><author>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Alzheimer's disease (AD)</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain network analysis multiple-kernel Support Vector Machines (SVMs)</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cohort Studies</topic><topic>Data Interpretation, Statistical</topic><topic>Diffusion Tensor Imaging</topic><topic>Diffusion tensor imaging (DTI)</topic><topic>Educational Status</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory</topic><topic>Middle Aged</topic><topic>Mild cognitive impairment (MCI)</topic><topic>Multimodality representation</topic><topic>Nerve Net - pathology</topic><topic>Neural Pathways - pathology</topic><topic>Neuropsychological Tests</topic><topic>NMR</topic><topic>Nonlinear Dynamics</topic><topic>Nuclear magnetic resonance</topic><topic>Reproducibility of Results</topic><topic>Resting-state functional magnetic resonance imaging (rs-fMRI)</topic><topic>ROC Curve</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wee, Chong-Yaw</creatorcontrib><creatorcontrib>Yap, Pew-Thian</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Denny, Kevin</creatorcontrib><creatorcontrib>Browndyke, Jeffrey N.</creatorcontrib><creatorcontrib>Potter, Guy G.</creatorcontrib><creatorcontrib>Welsh-Bohmer, Kathleen A.</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wee, Chong-Yaw</au><au>Yap, Pew-Thian</au><au>Zhang, Daoqiang</au><au>Denny, Kevin</au><au>Browndyke, Jeffrey N.</au><au>Potter, Guy G.</au><au>Welsh-Bohmer, Kathleen A.</au><au>Wang, Lihong</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of MCI individuals using structural and functional connectivity networks</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>2045</spage><epage>2056</epage><pages>2045-2056</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22019883</pmid><doi>10.1016/j.neuroimage.2011.10.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2045-2056
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3254811
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Aged
Algorithms
Alzheimer's disease
Alzheimer's disease (AD)
Artificial Intelligence
Brain
Brain - pathology
Brain network analysis multiple-kernel Support Vector Machines (SVMs)
Classification
Cluster Analysis
Cognitive ability
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - pathology
Cohort Studies
Data Interpretation, Statistical
Diffusion Tensor Imaging
Diffusion tensor imaging (DTI)
Educational Status
Female
Humans
Image Processing, Computer-Assisted
Linear Models
Magnetic Resonance Imaging
Male
Medical imaging
Memory
Middle Aged
Mild cognitive impairment (MCI)
Multimodality representation
Nerve Net - pathology
Neural Pathways - pathology
Neuropsychological Tests
NMR
Nonlinear Dynamics
Nuclear magnetic resonance
Reproducibility of Results
Resting-state functional magnetic resonance imaging (rs-fMRI)
ROC Curve
Support Vector Machine
title Identification of MCI individuals using structural and functional connectivity networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20MCI%20individuals%20using%20structural%20and%20functional%20connectivity%20networks&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Wee,%20Chong-Yaw&rft.date=2012-02-01&rft.volume=59&rft.issue=3&rft.spage=2045&rft.epage=2056&rft.pages=2045-2056&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.10.015&rft_dat=%3Cproquest_pubme%3E926892101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547316883&rft_id=info:pmid/22019883&rft_els_id=S1053811911011761&rfr_iscdi=true