Identification of MCI individuals using structural and functional connectivity networks
Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of A...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2012-02, Vol.59 (3), p.2045-2056 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2056 |
---|---|
container_issue | 3 |
container_start_page | 2045 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 59 |
creator | Wee, Chong-Yaw Yap, Pew-Thian Zhang, Daoqiang Denny, Kevin Browndyke, Jeffrey N. Potter, Guy G. Welsh-Bohmer, Kathleen A. Wang, Lihong Shen, Dinggang |
description | Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity. |
doi_str_mv | 10.1016/j.neuroimage.2011.10.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3254811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811911011761</els_id><sourcerecordid>926892101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</originalsourceid><addsrcrecordid>eNqNUsuOEzEQHCEQ-4BfQCNx4DTB7RnH9gUJImAjLeIC4mjN2u3gkNiLPQ7av6dHWZbHZTn50VVld3U1TQtsAQyWL7eLiDWnsB83uOAMgK4XDMSD5hSYFp0Wkj-c96LvFIA-ac5K2TLGNAzqcXPCiaOV6k-bL2uHcQo-2HEKKbbJtx9W6zZEFw7B1XFX2lpC3LRlytVONY-7doyu9TXamUBHm2JEOhzCdNNGnH6k_K08aR55IuPT2_W8-fzu7afVRXf58f169fqys0KyqRMAbuBCWe0Ulyhk7wfJPfZODm6UGp1nnApOXS2XowfUzA7cggPNmGW-P29eHXWv69UenaVm6IvmOpM3-cakMZi_KzF8NZt0MD0XA1lDAi9uBXL6XrFMZh-Kxd1ujJhqMZovlebk-n8hFVO6vx8JoldCgSTk83-Q21QzuVoMiEH2QJKznjqibE6lZPR3_QEzcyDM1vwOhJkDMVcoEER99qc_d8RfCSDAmyMAaUqHgNkUGzBadCHTVI1L4f5XfgJQ8M3H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547316883</pqid></control><display><type>article</type><title>Identification of MCI individuals using structural and functional connectivity networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</creator><creatorcontrib>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</creatorcontrib><description>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.10.015</identifier><identifier>PMID: 22019883</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Algorithms ; Alzheimer's disease ; Alzheimer's disease (AD) ; Artificial Intelligence ; Brain ; Brain - pathology ; Brain network analysis multiple-kernel Support Vector Machines (SVMs) ; Classification ; Cluster Analysis ; Cognitive ability ; Cognitive Dysfunction - diagnosis ; Cognitive Dysfunction - pathology ; Cohort Studies ; Data Interpretation, Statistical ; Diffusion Tensor Imaging ; Diffusion tensor imaging (DTI) ; Educational Status ; Female ; Humans ; Image Processing, Computer-Assisted ; Linear Models ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Memory ; Middle Aged ; Mild cognitive impairment (MCI) ; Multimodality representation ; Nerve Net - pathology ; Neural Pathways - pathology ; Neuropsychological Tests ; NMR ; Nonlinear Dynamics ; Nuclear magnetic resonance ; Reproducibility of Results ; Resting-state functional magnetic resonance imaging (rs-fMRI) ; ROC Curve ; Support Vector Machine</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2045-2056</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2012</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</citedby><cites>FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1547316883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22019883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wee, Chong-Yaw</creatorcontrib><creatorcontrib>Yap, Pew-Thian</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Denny, Kevin</creatorcontrib><creatorcontrib>Browndyke, Jeffrey N.</creatorcontrib><creatorcontrib>Potter, Guy G.</creatorcontrib><creatorcontrib>Welsh-Bohmer, Kathleen A.</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>Identification of MCI individuals using structural and functional connectivity networks</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Alzheimer's disease (AD)</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain network analysis multiple-kernel Support Vector Machines (SVMs)</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Cohort Studies</subject><subject>Data Interpretation, Statistical</subject><subject>Diffusion Tensor Imaging</subject><subject>Diffusion tensor imaging (DTI)</subject><subject>Educational Status</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory</subject><subject>Middle Aged</subject><subject>Mild cognitive impairment (MCI)</subject><subject>Multimodality representation</subject><subject>Nerve Net - pathology</subject><subject>Neural Pathways - pathology</subject><subject>Neuropsychological Tests</subject><subject>NMR</subject><subject>Nonlinear Dynamics</subject><subject>Nuclear magnetic resonance</subject><subject>Reproducibility of Results</subject><subject>Resting-state functional magnetic resonance imaging (rs-fMRI)</subject><subject>ROC Curve</subject><subject>Support Vector Machine</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUsuOEzEQHCEQ-4BfQCNx4DTB7RnH9gUJImAjLeIC4mjN2u3gkNiLPQ7av6dHWZbHZTn50VVld3U1TQtsAQyWL7eLiDWnsB83uOAMgK4XDMSD5hSYFp0Wkj-c96LvFIA-ac5K2TLGNAzqcXPCiaOV6k-bL2uHcQo-2HEKKbbJtx9W6zZEFw7B1XFX2lpC3LRlytVONY-7doyu9TXamUBHm2JEOhzCdNNGnH6k_K08aR55IuPT2_W8-fzu7afVRXf58f169fqys0KyqRMAbuBCWe0Ulyhk7wfJPfZODm6UGp1nnApOXS2XowfUzA7cggPNmGW-P29eHXWv69UenaVm6IvmOpM3-cakMZi_KzF8NZt0MD0XA1lDAi9uBXL6XrFMZh-Kxd1ujJhqMZovlebk-n8hFVO6vx8JoldCgSTk83-Q21QzuVoMiEH2QJKznjqibE6lZPR3_QEzcyDM1vwOhJkDMVcoEER99qc_d8RfCSDAmyMAaUqHgNkUGzBadCHTVI1L4f5XfgJQ8M3H</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Wee, Chong-Yaw</creator><creator>Yap, Pew-Thian</creator><creator>Zhang, Daoqiang</creator><creator>Denny, Kevin</creator><creator>Browndyke, Jeffrey N.</creator><creator>Potter, Guy G.</creator><creator>Welsh-Bohmer, Kathleen A.</creator><creator>Wang, Lihong</creator><creator>Shen, Dinggang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Identification of MCI individuals using structural and functional connectivity networks</title><author>Wee, Chong-Yaw ; Yap, Pew-Thian ; Zhang, Daoqiang ; Denny, Kevin ; Browndyke, Jeffrey N. ; Potter, Guy G. ; Welsh-Bohmer, Kathleen A. ; Wang, Lihong ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-511d4258c9d827e573f472fe3d74da79edf0227ed8b66af1e90c42c1d1900c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Alzheimer's disease (AD)</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain network analysis multiple-kernel Support Vector Machines (SVMs)</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Cohort Studies</topic><topic>Data Interpretation, Statistical</topic><topic>Diffusion Tensor Imaging</topic><topic>Diffusion tensor imaging (DTI)</topic><topic>Educational Status</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory</topic><topic>Middle Aged</topic><topic>Mild cognitive impairment (MCI)</topic><topic>Multimodality representation</topic><topic>Nerve Net - pathology</topic><topic>Neural Pathways - pathology</topic><topic>Neuropsychological Tests</topic><topic>NMR</topic><topic>Nonlinear Dynamics</topic><topic>Nuclear magnetic resonance</topic><topic>Reproducibility of Results</topic><topic>Resting-state functional magnetic resonance imaging (rs-fMRI)</topic><topic>ROC Curve</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wee, Chong-Yaw</creatorcontrib><creatorcontrib>Yap, Pew-Thian</creatorcontrib><creatorcontrib>Zhang, Daoqiang</creatorcontrib><creatorcontrib>Denny, Kevin</creatorcontrib><creatorcontrib>Browndyke, Jeffrey N.</creatorcontrib><creatorcontrib>Potter, Guy G.</creatorcontrib><creatorcontrib>Welsh-Bohmer, Kathleen A.</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wee, Chong-Yaw</au><au>Yap, Pew-Thian</au><au>Zhang, Daoqiang</au><au>Denny, Kevin</au><au>Browndyke, Jeffrey N.</au><au>Potter, Guy G.</au><au>Welsh-Bohmer, Kathleen A.</au><au>Wang, Lihong</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of MCI individuals using structural and functional connectivity networks</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>2045</spage><epage>2056</epage><pages>2045-2056</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms of cognitive impairment. Recent emergence of brain network analysis has made characterization of neurological disorders at a whole-brain connectivity level possible, thus providing new avenues for brain diseases classification. Employing multiple-kernel Support Vector Machines (SVMs), we attempt to integrate information from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) for improving classification performance. Our results indicate that the multimodality classification approach yields statistically significant improvement in accuracy over using each modality independently. The classification accuracy obtained by the proposed method is 96.3%, which is an increase of at least 7.4% from the single modality-based methods and the direct data fusion method. A cross-validation estimation of the generalization performance gives an area of 0.953 under the receiver operating characteristic (ROC) curve, indicating excellent diagnostic power. The multimodality classification approach hence allows more accurate early detection of brain abnormalities with greater sensitivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22019883</pmid><doi>10.1016/j.neuroimage.2011.10.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2045-2056 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3254811 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Aged Algorithms Alzheimer's disease Alzheimer's disease (AD) Artificial Intelligence Brain Brain - pathology Brain network analysis multiple-kernel Support Vector Machines (SVMs) Classification Cluster Analysis Cognitive ability Cognitive Dysfunction - diagnosis Cognitive Dysfunction - pathology Cohort Studies Data Interpretation, Statistical Diffusion Tensor Imaging Diffusion tensor imaging (DTI) Educational Status Female Humans Image Processing, Computer-Assisted Linear Models Magnetic Resonance Imaging Male Medical imaging Memory Middle Aged Mild cognitive impairment (MCI) Multimodality representation Nerve Net - pathology Neural Pathways - pathology Neuropsychological Tests NMR Nonlinear Dynamics Nuclear magnetic resonance Reproducibility of Results Resting-state functional magnetic resonance imaging (rs-fMRI) ROC Curve Support Vector Machine |
title | Identification of MCI individuals using structural and functional connectivity networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20MCI%20individuals%20using%20structural%20and%20functional%20connectivity%20networks&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Wee,%20Chong-Yaw&rft.date=2012-02-01&rft.volume=59&rft.issue=3&rft.spage=2045&rft.epage=2056&rft.pages=2045-2056&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.10.015&rft_dat=%3Cproquest_pubme%3E926892101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547316883&rft_id=info:pmid/22019883&rft_els_id=S1053811911011761&rfr_iscdi=true |