Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1
New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) a...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2012-01, Vol.81 (1), p.53-62 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Molecular pharmacology |
container_volume | 81 |
creator | Ye, Yanping Yaeger, Daniel Owen, Laura J. Escobedo, Jorge O. Wang, Jialu Singer, Jeffrey D. Strongin, Robert M. Abramson, Jonathan J. |
description | New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity. |
doi_str_mv | 10.1124/mol.111.074740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24033741</els_id><sourcerecordid>912110281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhyhH5BpcsY2-8STggoe0WKlUClSJxsxxnsjFy7GB7i5aX6CvjaEsFBzh5NPPNP-P5CXnOYMkYL1-P3uaALaEqqxIekAUTnBWQUw_JAoCvi7oRX0_Ikxi_AbBS1PCYnHDW1A0X1YLcnmE0O2fcjm6U1WY_0iu0qCLSzaCcQ0sv3GBak3yI9IdJA926XNDY0a1FnYJ39Mw7H-in4CcMyWB8Qz8n1Rprfs66acha1sfckdMJqe_p1UE53xmHeZrGKYvT68OElD0lj3plIz67e0_Jl_Pt9eZDcfnx_cXm3WWhy4qlooRVxUQJjRad4KrrASro9VoI3VZr0ffQc6V4Bw2vVFMjNPlYjK1UAx3nbb06JW-PutO-HbHT6FJQVk7BjCocpFdG_l1xZpA7fyNXXMzXzQIv7wSC_77HmORookZrlUO_jzIPZAx4PZOv_kvOFFRNNi6jyyOqg48xYH-_EAM5-y2z3zlg8uh3bnjx5zfu8d8GZ6A-ApiPeWMwyKgNzvaZkN2TnTf_0v4F8ny7Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028079152</pqid></control><display><type>article</type><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</creator><creatorcontrib>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</creatorcontrib><description>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.111.074740</identifier><identifier>PMID: 21989257</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium Channel Blockers - chemical synthesis ; Calcium Channel Blockers - metabolism ; Calcium Channel Blockers - pharmacology ; Calcium Channels - chemical synthesis ; Calcium Channels - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Drug Discovery - methods ; Electron Transport - physiology ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Protein Stability - drug effects ; Rabbits ; Ryanodine Receptor Calcium Release Channel - chemical synthesis ; Ryanodine Receptor Calcium Release Channel - metabolism ; Thiazepines - chemistry ; Thiazepines - metabolism</subject><ispartof>Molecular pharmacology, 2012-01, Vol.81 (1), p.53-62</ispartof><rights>2012 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</citedby><cites>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21989257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yanping</creatorcontrib><creatorcontrib>Yaeger, Daniel</creatorcontrib><creatorcontrib>Owen, Laura J.</creatorcontrib><creatorcontrib>Escobedo, Jorge O.</creatorcontrib><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Singer, Jeffrey D.</creatorcontrib><creatorcontrib>Strongin, Robert M.</creatorcontrib><creatorcontrib>Abramson, Jonathan J.</creatorcontrib><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</description><subject>Animals</subject><subject>Calcium Channel Blockers - chemical synthesis</subject><subject>Calcium Channel Blockers - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels - chemical synthesis</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Drug Discovery - methods</subject><subject>Electron Transport - physiology</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Protein Stability - drug effects</subject><subject>Rabbits</subject><subject>Ryanodine Receptor Calcium Release Channel - chemical synthesis</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Thiazepines - chemistry</subject><subject>Thiazepines - metabolism</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EokvhyhH5BpcsY2-8STggoe0WKlUClSJxsxxnsjFy7GB7i5aX6CvjaEsFBzh5NPPNP-P5CXnOYMkYL1-P3uaALaEqqxIekAUTnBWQUw_JAoCvi7oRX0_Ikxi_AbBS1PCYnHDW1A0X1YLcnmE0O2fcjm6U1WY_0iu0qCLSzaCcQ0sv3GBak3yI9IdJA926XNDY0a1FnYJ39Mw7H-in4CcMyWB8Qz8n1Rprfs66acha1sfckdMJqe_p1UE53xmHeZrGKYvT68OElD0lj3plIz67e0_Jl_Pt9eZDcfnx_cXm3WWhy4qlooRVxUQJjRad4KrrASro9VoI3VZr0ffQc6V4Bw2vVFMjNPlYjK1UAx3nbb06JW-PutO-HbHT6FJQVk7BjCocpFdG_l1xZpA7fyNXXMzXzQIv7wSC_77HmORookZrlUO_jzIPZAx4PZOv_kvOFFRNNi6jyyOqg48xYH-_EAM5-y2z3zlg8uh3bnjx5zfu8d8GZ6A-ApiPeWMwyKgNzvaZkN2TnTf_0v4F8ny7Cg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ye, Yanping</creator><creator>Yaeger, Daniel</creator><creator>Owen, Laura J.</creator><creator>Escobedo, Jorge O.</creator><creator>Wang, Jialu</creator><creator>Singer, Jeffrey D.</creator><creator>Strongin, Robert M.</creator><creator>Abramson, Jonathan J.</creator><general>Elsevier Inc</general><general>The American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><author>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Calcium Channel Blockers - chemical synthesis</topic><topic>Calcium Channel Blockers - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels - chemical synthesis</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Drug Discovery - methods</topic><topic>Electron Transport - physiology</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Protein Stability - drug effects</topic><topic>Rabbits</topic><topic>Ryanodine Receptor Calcium Release Channel - chemical synthesis</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Thiazepines - chemistry</topic><topic>Thiazepines - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yanping</creatorcontrib><creatorcontrib>Yaeger, Daniel</creatorcontrib><creatorcontrib>Owen, Laura J.</creatorcontrib><creatorcontrib>Escobedo, Jorge O.</creatorcontrib><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Singer, Jeffrey D.</creatorcontrib><creatorcontrib>Strongin, Robert M.</creatorcontrib><creatorcontrib>Abramson, Jonathan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yanping</au><au>Yaeger, Daniel</au><au>Owen, Laura J.</au><au>Escobedo, Jorge O.</au><au>Wang, Jialu</au><au>Singer, Jeffrey D.</au><au>Strongin, Robert M.</au><au>Abramson, Jonathan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>81</volume><issue>1</issue><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21989257</pmid><doi>10.1124/mol.111.074740</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-895X |
ispartof | Molecular pharmacology, 2012-01, Vol.81 (1), p.53-62 |
issn | 0026-895X 1521-0111 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250111 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Animals Calcium Channel Blockers - chemical synthesis Calcium Channel Blockers - metabolism Calcium Channel Blockers - pharmacology Calcium Channels - chemical synthesis Calcium Channels - metabolism Calcium Signaling - drug effects Calcium Signaling - physiology Drug Discovery - methods Electron Transport - physiology Muscle, Skeletal - cytology Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Protein Stability - drug effects Rabbits Ryanodine Receptor Calcium Release Channel - chemical synthesis Ryanodine Receptor Calcium Release Channel - metabolism Thiazepines - chemistry Thiazepines - metabolism |
title | Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Calcium%20Release%20Channel%20Inhibitors%20with%20Enhanced%20Electron%20Donor%20Properties:%20Stabilizing%20the%20Closed%20State%20of%20Ryanodine%20Receptor%20Type%201&rft.jtitle=Molecular%20pharmacology&rft.au=Ye,%20Yanping&rft.date=2012-01&rft.volume=81&rft.issue=1&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.111.074740&rft_dat=%3Cproquest_pubme%3E912110281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028079152&rft_id=info:pmid/21989257&rft_els_id=S0026895X24033741&rfr_iscdi=true |