Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1

New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2012-01, Vol.81 (1), p.53-62
Hauptverfasser: Ye, Yanping, Yaeger, Daniel, Owen, Laura J., Escobedo, Jorge O., Wang, Jialu, Singer, Jeffrey D., Strongin, Robert M., Abramson, Jonathan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 53
container_title Molecular pharmacology
container_volume 81
creator Ye, Yanping
Yaeger, Daniel
Owen, Laura J.
Escobedo, Jorge O.
Wang, Jialu
Singer, Jeffrey D.
Strongin, Robert M.
Abramson, Jonathan J.
description New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.
doi_str_mv 10.1124/mol.111.074740
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24033741</els_id><sourcerecordid>912110281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhyhH5BpcsY2-8STggoe0WKlUClSJxsxxnsjFy7GB7i5aX6CvjaEsFBzh5NPPNP-P5CXnOYMkYL1-P3uaALaEqqxIekAUTnBWQUw_JAoCvi7oRX0_Ikxi_AbBS1PCYnHDW1A0X1YLcnmE0O2fcjm6U1WY_0iu0qCLSzaCcQ0sv3GBak3yI9IdJA926XNDY0a1FnYJ39Mw7H-in4CcMyWB8Qz8n1Rprfs66acha1sfckdMJqe_p1UE53xmHeZrGKYvT68OElD0lj3plIz67e0_Jl_Pt9eZDcfnx_cXm3WWhy4qlooRVxUQJjRad4KrrASro9VoI3VZr0ffQc6V4Bw2vVFMjNPlYjK1UAx3nbb06JW-PutO-HbHT6FJQVk7BjCocpFdG_l1xZpA7fyNXXMzXzQIv7wSC_77HmORookZrlUO_jzIPZAx4PZOv_kvOFFRNNi6jyyOqg48xYH-_EAM5-y2z3zlg8uh3bnjx5zfu8d8GZ6A-ApiPeWMwyKgNzvaZkN2TnTf_0v4F8ny7Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028079152</pqid></control><display><type>article</type><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</creator><creatorcontrib>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</creatorcontrib><description>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.111.074740</identifier><identifier>PMID: 21989257</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium Channel Blockers - chemical synthesis ; Calcium Channel Blockers - metabolism ; Calcium Channel Blockers - pharmacology ; Calcium Channels - chemical synthesis ; Calcium Channels - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Drug Discovery - methods ; Electron Transport - physiology ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Protein Stability - drug effects ; Rabbits ; Ryanodine Receptor Calcium Release Channel - chemical synthesis ; Ryanodine Receptor Calcium Release Channel - metabolism ; Thiazepines - chemistry ; Thiazepines - metabolism</subject><ispartof>Molecular pharmacology, 2012-01, Vol.81 (1), p.53-62</ispartof><rights>2012 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</citedby><cites>FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21989257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Yanping</creatorcontrib><creatorcontrib>Yaeger, Daniel</creatorcontrib><creatorcontrib>Owen, Laura J.</creatorcontrib><creatorcontrib>Escobedo, Jorge O.</creatorcontrib><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Singer, Jeffrey D.</creatorcontrib><creatorcontrib>Strongin, Robert M.</creatorcontrib><creatorcontrib>Abramson, Jonathan J.</creatorcontrib><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</description><subject>Animals</subject><subject>Calcium Channel Blockers - chemical synthesis</subject><subject>Calcium Channel Blockers - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels - chemical synthesis</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Drug Discovery - methods</subject><subject>Electron Transport - physiology</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Protein Stability - drug effects</subject><subject>Rabbits</subject><subject>Ryanodine Receptor Calcium Release Channel - chemical synthesis</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Thiazepines - chemistry</subject><subject>Thiazepines - metabolism</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EokvhyhH5BpcsY2-8STggoe0WKlUClSJxsxxnsjFy7GB7i5aX6CvjaEsFBzh5NPPNP-P5CXnOYMkYL1-P3uaALaEqqxIekAUTnBWQUw_JAoCvi7oRX0_Ikxi_AbBS1PCYnHDW1A0X1YLcnmE0O2fcjm6U1WY_0iu0qCLSzaCcQ0sv3GBak3yI9IdJA926XNDY0a1FnYJ39Mw7H-in4CcMyWB8Qz8n1Rprfs66acha1sfckdMJqe_p1UE53xmHeZrGKYvT68OElD0lj3plIz67e0_Jl_Pt9eZDcfnx_cXm3WWhy4qlooRVxUQJjRad4KrrASro9VoI3VZr0ffQc6V4Bw2vVFMjNPlYjK1UAx3nbb06JW-PutO-HbHT6FJQVk7BjCocpFdG_l1xZpA7fyNXXMzXzQIv7wSC_77HmORookZrlUO_jzIPZAx4PZOv_kvOFFRNNi6jyyOqg48xYH-_EAM5-y2z3zlg8uh3bnjx5zfu8d8GZ6A-ApiPeWMwyKgNzvaZkN2TnTf_0v4F8ny7Cg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ye, Yanping</creator><creator>Yaeger, Daniel</creator><creator>Owen, Laura J.</creator><creator>Escobedo, Jorge O.</creator><creator>Wang, Jialu</creator><creator>Singer, Jeffrey D.</creator><creator>Strongin, Robert M.</creator><creator>Abramson, Jonathan J.</creator><general>Elsevier Inc</general><general>The American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</title><author>Ye, Yanping ; Yaeger, Daniel ; Owen, Laura J. ; Escobedo, Jorge O. ; Wang, Jialu ; Singer, Jeffrey D. ; Strongin, Robert M. ; Abramson, Jonathan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-403715409c5d52adf0070fc655cb765ff0f2aa2d0927a98e09124113a90d22b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Calcium Channel Blockers - chemical synthesis</topic><topic>Calcium Channel Blockers - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels - chemical synthesis</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Drug Discovery - methods</topic><topic>Electron Transport - physiology</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Protein Stability - drug effects</topic><topic>Rabbits</topic><topic>Ryanodine Receptor Calcium Release Channel - chemical synthesis</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Thiazepines - chemistry</topic><topic>Thiazepines - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yanping</creatorcontrib><creatorcontrib>Yaeger, Daniel</creatorcontrib><creatorcontrib>Owen, Laura J.</creatorcontrib><creatorcontrib>Escobedo, Jorge O.</creatorcontrib><creatorcontrib>Wang, Jialu</creatorcontrib><creatorcontrib>Singer, Jeffrey D.</creatorcontrib><creatorcontrib>Strongin, Robert M.</creatorcontrib><creatorcontrib>Abramson, Jonathan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yanping</au><au>Yaeger, Daniel</au><au>Owen, Laura J.</au><au>Escobedo, Jorge O.</au><au>Wang, Jialu</au><au>Singer, Jeffrey D.</au><au>Strongin, Robert M.</au><au>Abramson, Jonathan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2012-01</date><risdate>2012</risdate><volume>81</volume><issue>1</issue><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine (K201, JTV519) with enhanced electron donor properties. Instead of activating channel activity (∼100 μM), the 4-methoxy analog of 4-CmC [4-methoxy-3-methyl phenol (4-MmC)] inhibits channel activity at submicromolar concentrations (IC50 = 0.34 ± 0.08 μM). Increasing the electron donor characteristics of K201 by synthesizing its dioxole congener results in an approximately 16 times more potent RyR1 inhibitor (IC50 = 0.24 ± 0.05 μM) compared with K201 (IC50 = 3.98 ± 0.79 μM). Inhibition is not caused by an increased closed time of the channel but seems to be caused by an open state block of RyR1. These alterations to chemical structure do not influence the ability of these drugs to affect Ca2+-dependent ATPase activity of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 1. Moreover, the FKBP12 protein, which stabilizes RyR1 in a closed configuration, is shown to be a strong electron donor. It seems as if FKBP12, K201, its dioxole derivative, and 4-MmC inhibit RyR1 channel activity by virtue of their electron donor characteristics. These results embody strong evidence that designing new drugs to target RyR1 with enhanced electron donor characteristics results in more potent channel inhibitors. This is a novel approach to the design of new, more potent drugs with the aim of functionally modifying RyR1 single-channel activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21989257</pmid><doi>10.1124/mol.111.074740</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 2012-01, Vol.81 (1), p.53-62
issn 0026-895X
1521-0111
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3250111
source MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Animals
Calcium Channel Blockers - chemical synthesis
Calcium Channel Blockers - metabolism
Calcium Channel Blockers - pharmacology
Calcium Channels - chemical synthesis
Calcium Channels - metabolism
Calcium Signaling - drug effects
Calcium Signaling - physiology
Drug Discovery - methods
Electron Transport - physiology
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Protein Stability - drug effects
Rabbits
Ryanodine Receptor Calcium Release Channel - chemical synthesis
Ryanodine Receptor Calcium Release Channel - metabolism
Thiazepines - chemistry
Thiazepines - metabolism
title Designing Calcium Release Channel Inhibitors with Enhanced Electron Donor Properties: Stabilizing the Closed State of Ryanodine Receptor Type 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Calcium%20Release%20Channel%20Inhibitors%20with%20Enhanced%20Electron%20Donor%20Properties:%20Stabilizing%20the%20Closed%20State%20of%20Ryanodine%20Receptor%20Type%201&rft.jtitle=Molecular%20pharmacology&rft.au=Ye,%20Yanping&rft.date=2012-01&rft.volume=81&rft.issue=1&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.111.074740&rft_dat=%3Cproquest_pubme%3E912110281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028079152&rft_id=info:pmid/21989257&rft_els_id=S0026895X24033741&rfr_iscdi=true