Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein
The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and acti...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-01, Vol.287 (1), p.581-588 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 1 |
container_start_page | 581 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Glidden, Emily J. Gray, Lisa G. Vemuru, Suneil Li, Duo Harris, Thurl E. Mayo, Marty W. |
description | The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.
Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2).
Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation.
Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity.
Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases. |
doi_str_mv | 10.1074/jbc.M111.304337 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3249112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820535400</els_id><sourcerecordid>S0021925820535400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</originalsourceid><addsrcrecordid>eNp1kUFP2zAUxy0EgtLtvNvkIxxS_OyEJJdJVQVsElUn6KTdLMd5pmZJHDluRb8BH3vuulVwmC-Wnv_v92z_CPkEbAIsT6-eKz2ZA8BEsFSI_IiMgBUiERn8PCYjxjgkJc-KM3I-DM8srrSEU3LGOStSnsGIvM7XTbB9g_TRBqRTjWHbqGBdR52hD1YH5-ljsO06VnGgc9W2qrGqo0vlnzD8SaletVttOzpzbUS9UE4v2uXiYcYvkxp77GrsAv2-ckO_cv4Nf_orlr0LaLsP5MSoZsCPf_cx-XF7s5x9Te4Xd99m0_tEZ6wISZqJypSg88IwzLQSTJRguECD7BpBIMNKYypQXBcGcp3ldWryohBgslKZSozJlz23X1ct1jrezKtG9t62ym-lU1a-P-nsSj65jRQ8_h3wCLjaA7R3w-DRHHqByZ0UGaXInRS5lxI7Pr8decj_sxAD5T6A8eEbi14O2mKnsbYedZC1s_-F_wYaZZ7P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</creator><creatorcontrib>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</creatorcontrib><description>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.
Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2).
Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation.
Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity.
Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.304337</identifier><identifier>PMID: 22084251</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Akt ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Mammalian Target of Rapamycin Complex 2 ; Metabolism ; mTOR Complex (mTORC) ; Mutagenesis, Site-Directed ; Mutation ; Phosphorylation ; Protein Acetylation ; Protein Acylation ; Protein Stability ; Proto-Oncogene Proteins c-akt - chemistry ; Proto-Oncogene Proteins c-akt - metabolism ; Rapamycin-Insensitive Companion of mTOR Protein ; Rictor ; Serine - metabolism ; Signal Transduction ; Sirtuin ; TOR Serine-Threonine Kinases - metabolism ; Up-Regulation</subject><ispartof>The Journal of biological chemistry, 2012-01, Vol.287 (1), p.581-588</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</citedby><cites>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249112/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249112/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22084251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glidden, Emily J.</creatorcontrib><creatorcontrib>Gray, Lisa G.</creatorcontrib><creatorcontrib>Vemuru, Suneil</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><creatorcontrib>Mayo, Marty W.</creatorcontrib><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.
Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2).
Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation.
Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity.
Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</description><subject>Acetylation</subject><subject>Akt</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mammalian Target of Rapamycin Complex 2</subject><subject>Metabolism</subject><subject>mTOR Complex (mTORC)</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Protein Acetylation</subject><subject>Protein Acylation</subject><subject>Protein Stability</subject><subject>Proto-Oncogene Proteins c-akt - chemistry</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein</subject><subject>Rictor</subject><subject>Serine - metabolism</subject><subject>Signal Transduction</subject><subject>Sirtuin</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Up-Regulation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFP2zAUxy0EgtLtvNvkIxxS_OyEJJdJVQVsElUn6KTdLMd5pmZJHDluRb8BH3vuulVwmC-Wnv_v92z_CPkEbAIsT6-eKz2ZA8BEsFSI_IiMgBUiERn8PCYjxjgkJc-KM3I-DM8srrSEU3LGOStSnsGIvM7XTbB9g_TRBqRTjWHbqGBdR52hD1YH5-ljsO06VnGgc9W2qrGqo0vlnzD8SaletVttOzpzbUS9UE4v2uXiYcYvkxp77GrsAv2-ckO_cv4Nf_orlr0LaLsP5MSoZsCPf_cx-XF7s5x9Te4Xd99m0_tEZ6wISZqJypSg88IwzLQSTJRguECD7BpBIMNKYypQXBcGcp3ldWryohBgslKZSozJlz23X1ct1jrezKtG9t62ym-lU1a-P-nsSj65jRQ8_h3wCLjaA7R3w-DRHHqByZ0UGaXInRS5lxI7Pr8decj_sxAD5T6A8eEbi14O2mKnsbYedZC1s_-F_wYaZZ7P</recordid><startdate>20120102</startdate><enddate>20120102</enddate><creator>Glidden, Emily J.</creator><creator>Gray, Lisa G.</creator><creator>Vemuru, Suneil</creator><creator>Li, Duo</creator><creator>Harris, Thurl E.</creator><creator>Mayo, Marty W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120102</creationdate><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><author>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Akt</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mammalian Target of Rapamycin Complex 2</topic><topic>Metabolism</topic><topic>mTOR Complex (mTORC)</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Protein Acetylation</topic><topic>Protein Acylation</topic><topic>Protein Stability</topic><topic>Proto-Oncogene Proteins c-akt - chemistry</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein</topic><topic>Rictor</topic><topic>Serine - metabolism</topic><topic>Signal Transduction</topic><topic>Sirtuin</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glidden, Emily J.</creatorcontrib><creatorcontrib>Gray, Lisa G.</creatorcontrib><creatorcontrib>Vemuru, Suneil</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><creatorcontrib>Mayo, Marty W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glidden, Emily J.</au><au>Gray, Lisa G.</au><au>Vemuru, Suneil</au><au>Li, Duo</au><au>Harris, Thurl E.</au><au>Mayo, Marty W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-01-02</date><risdate>2012</risdate><volume>287</volume><issue>1</issue><spage>581</spage><epage>588</epage><pages>581-588</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.
Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2).
Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation.
Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity.
Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22084251</pmid><doi>10.1074/jbc.M111.304337</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-01, Vol.287 (1), p.581-588 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3249112 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetylation Akt Binding Sites Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism HEK293 Cells HeLa Cells Humans Mammalian Target of Rapamycin Complex 2 Metabolism mTOR Complex (mTORC) Mutagenesis, Site-Directed Mutation Phosphorylation Protein Acetylation Protein Acylation Protein Stability Proto-Oncogene Proteins c-akt - chemistry Proto-Oncogene Proteins c-akt - metabolism Rapamycin-Insensitive Companion of mTOR Protein Rictor Serine - metabolism Signal Transduction Sirtuin TOR Serine-Threonine Kinases - metabolism Up-Regulation |
title | Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Site%20Acetylation%20of%20Rictor%20Stimulates%20Mammalian%20Target%20of%20Rapamycin%20Complex%202%20(mTORC2)-dependent%20Phosphorylation%20of%20Akt%20Protein&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Glidden,%20Emily%20J.&rft.date=2012-01-02&rft.volume=287&rft.issue=1&rft.spage=581&rft.epage=588&rft.pages=581-588&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.304337&rft_dat=%3Celsevier_pubme%3ES0021925820535400%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22084251&rft_els_id=S0021925820535400&rfr_iscdi=true |