Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein

The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-01, Vol.287 (1), p.581-588
Hauptverfasser: Glidden, Emily J., Gray, Lisa G., Vemuru, Suneil, Li, Duo, Harris, Thurl E., Mayo, Marty W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 1
container_start_page 581
container_title The Journal of biological chemistry
container_volume 287
creator Glidden, Emily J.
Gray, Lisa G.
Vemuru, Suneil
Li, Duo
Harris, Thurl E.
Mayo, Marty W.
description The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt. Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2). Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation. Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity. Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.
doi_str_mv 10.1074/jbc.M111.304337
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3249112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820535400</els_id><sourcerecordid>S0021925820535400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</originalsourceid><addsrcrecordid>eNp1kUFP2zAUxy0EgtLtvNvkIxxS_OyEJJdJVQVsElUn6KTdLMd5pmZJHDluRb8BH3vuulVwmC-Wnv_v92z_CPkEbAIsT6-eKz2ZA8BEsFSI_IiMgBUiERn8PCYjxjgkJc-KM3I-DM8srrSEU3LGOStSnsGIvM7XTbB9g_TRBqRTjWHbqGBdR52hD1YH5-ljsO06VnGgc9W2qrGqo0vlnzD8SaletVttOzpzbUS9UE4v2uXiYcYvkxp77GrsAv2-ckO_cv4Nf_orlr0LaLsP5MSoZsCPf_cx-XF7s5x9Te4Xd99m0_tEZ6wISZqJypSg88IwzLQSTJRguECD7BpBIMNKYypQXBcGcp3ldWryohBgslKZSozJlz23X1ct1jrezKtG9t62ym-lU1a-P-nsSj65jRQ8_h3wCLjaA7R3w-DRHHqByZ0UGaXInRS5lxI7Pr8decj_sxAD5T6A8eEbi14O2mKnsbYedZC1s_-F_wYaZZ7P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</creator><creatorcontrib>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</creatorcontrib><description>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt. Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2). Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation. Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity. Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.304337</identifier><identifier>PMID: 22084251</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Akt ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Mammalian Target of Rapamycin Complex 2 ; Metabolism ; mTOR Complex (mTORC) ; Mutagenesis, Site-Directed ; Mutation ; Phosphorylation ; Protein Acetylation ; Protein Acylation ; Protein Stability ; Proto-Oncogene Proteins c-akt - chemistry ; Proto-Oncogene Proteins c-akt - metabolism ; Rapamycin-Insensitive Companion of mTOR Protein ; Rictor ; Serine - metabolism ; Signal Transduction ; Sirtuin ; TOR Serine-Threonine Kinases - metabolism ; Up-Regulation</subject><ispartof>The Journal of biological chemistry, 2012-01, Vol.287 (1), p.581-588</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</citedby><cites>FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249112/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249112/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22084251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glidden, Emily J.</creatorcontrib><creatorcontrib>Gray, Lisa G.</creatorcontrib><creatorcontrib>Vemuru, Suneil</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><creatorcontrib>Mayo, Marty W.</creatorcontrib><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt. Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2). Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation. Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity. Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</description><subject>Acetylation</subject><subject>Akt</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mammalian Target of Rapamycin Complex 2</subject><subject>Metabolism</subject><subject>mTOR Complex (mTORC)</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Protein Acetylation</subject><subject>Protein Acylation</subject><subject>Protein Stability</subject><subject>Proto-Oncogene Proteins c-akt - chemistry</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rapamycin-Insensitive Companion of mTOR Protein</subject><subject>Rictor</subject><subject>Serine - metabolism</subject><subject>Signal Transduction</subject><subject>Sirtuin</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Up-Regulation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFP2zAUxy0EgtLtvNvkIxxS_OyEJJdJVQVsElUn6KTdLMd5pmZJHDluRb8BH3vuulVwmC-Wnv_v92z_CPkEbAIsT6-eKz2ZA8BEsFSI_IiMgBUiERn8PCYjxjgkJc-KM3I-DM8srrSEU3LGOStSnsGIvM7XTbB9g_TRBqRTjWHbqGBdR52hD1YH5-ljsO06VnGgc9W2qrGqo0vlnzD8SaletVttOzpzbUS9UE4v2uXiYcYvkxp77GrsAv2-ckO_cv4Nf_orlr0LaLsP5MSoZsCPf_cx-XF7s5x9Te4Xd99m0_tEZ6wISZqJypSg88IwzLQSTJRguECD7BpBIMNKYypQXBcGcp3ldWryohBgslKZSozJlz23X1ct1jrezKtG9t62ym-lU1a-P-nsSj65jRQ8_h3wCLjaA7R3w-DRHHqByZ0UGaXInRS5lxI7Pr8decj_sxAD5T6A8eEbi14O2mKnsbYedZC1s_-F_wYaZZ7P</recordid><startdate>20120102</startdate><enddate>20120102</enddate><creator>Glidden, Emily J.</creator><creator>Gray, Lisa G.</creator><creator>Vemuru, Suneil</creator><creator>Li, Duo</creator><creator>Harris, Thurl E.</creator><creator>Mayo, Marty W.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120102</creationdate><title>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</title><author>Glidden, Emily J. ; Gray, Lisa G. ; Vemuru, Suneil ; Li, Duo ; Harris, Thurl E. ; Mayo, Marty W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-453bf91c78f0e5ca30391f23efe06e13e0ebce43e368f17c57d4f78831f59afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Akt</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mammalian Target of Rapamycin Complex 2</topic><topic>Metabolism</topic><topic>mTOR Complex (mTORC)</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Protein Acetylation</topic><topic>Protein Acylation</topic><topic>Protein Stability</topic><topic>Proto-Oncogene Proteins c-akt - chemistry</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rapamycin-Insensitive Companion of mTOR Protein</topic><topic>Rictor</topic><topic>Serine - metabolism</topic><topic>Signal Transduction</topic><topic>Sirtuin</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glidden, Emily J.</creatorcontrib><creatorcontrib>Gray, Lisa G.</creatorcontrib><creatorcontrib>Vemuru, Suneil</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Harris, Thurl E.</creatorcontrib><creatorcontrib>Mayo, Marty W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glidden, Emily J.</au><au>Gray, Lisa G.</au><au>Vemuru, Suneil</au><au>Li, Duo</au><au>Harris, Thurl E.</au><au>Mayo, Marty W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-01-02</date><risdate>2012</risdate><volume>287</volume><issue>1</issue><spage>581</spage><epage>588</epage><pages>581-588</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt. Background: Rictor is an essential component of the mammalian target of rapamycin complex 2 (mTORC2). Results: Rictor contains two central regions that (i) bind mSin1 and LST8 and (ii) function in multisite acetylation. Conclusion: Rictor acetylation is a post-translational modification that potentiates mTORC2 activity. Significance: Understanding the molecular mechanisms by which acetylation potentiates mTORC2 activity links nutrient signaling with critical metabolic kinases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22084251</pmid><doi>10.1074/jbc.M111.304337</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-01, Vol.287 (1), p.581-588
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3249112
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetylation
Akt
Binding Sites
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
HEK293 Cells
HeLa Cells
Humans
Mammalian Target of Rapamycin Complex 2
Metabolism
mTOR Complex (mTORC)
Mutagenesis, Site-Directed
Mutation
Phosphorylation
Protein Acetylation
Protein Acylation
Protein Stability
Proto-Oncogene Proteins c-akt - chemistry
Proto-Oncogene Proteins c-akt - metabolism
Rapamycin-Insensitive Companion of mTOR Protein
Rictor
Serine - metabolism
Signal Transduction
Sirtuin
TOR Serine-Threonine Kinases - metabolism
Up-Regulation
title Multiple Site Acetylation of Rictor Stimulates Mammalian Target of Rapamycin Complex 2 (mTORC2)-dependent Phosphorylation of Akt Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Site%20Acetylation%20of%20Rictor%20Stimulates%20Mammalian%20Target%20of%20Rapamycin%20Complex%202%20(mTORC2)-dependent%20Phosphorylation%20of%20Akt%20Protein&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Glidden,%20Emily%20J.&rft.date=2012-01-02&rft.volume=287&rft.issue=1&rft.spage=581&rft.epage=588&rft.pages=581-588&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.304337&rft_dat=%3Celsevier_pubme%3ES0021925820535400%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22084251&rft_els_id=S0021925820535400&rfr_iscdi=true