Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination
We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Tra...
Gespeichert in:
Veröffentlicht in: | Nanoscale research letters 2008-09, Vol.3 (9), p.315-320, Article 315 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 9 |
container_start_page | 315 |
container_title | Nanoscale research letters |
container_volume | 3 |
creator | Othonos, Andreas Lioudakis, Emmanouil Nassiopoulou, AG |
description | We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Transient photoinduced absorption techniques have been employed to investigate the effects of surface-related states on the relaxation dynamics of photogenerated carriers in 2.8 nm oxidized silicon NCs. Independent of the excitation photon energy, non-degenerate measurements reveal several distinct relaxation regions corresponding to relaxation of photoexcited carriers from the initial excited states, the lowest indirect states and the surface-related states. Furthermore, degenerate and non-degenerate measurements at difference excitation fluences reveal a linear dependence of the maximum of the photoinduced absorption (PA) signal and an identical decay, suggesting that Auger recombination does not play a significant role in these nanostructures even for fluence generating up to 20 carriers/NC. |
doi_str_mv | 10.1007/s11671-008-9159-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787082438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-877b0d399de5e9fb28baccb54baca5ea2f82607d032428b12aeee6031cde76943</originalsourceid><addsrcrecordid>eNp1kV1LwzAYhYsoOKc_wLuA19Uk_Uh6I4zhx2A4cArehTR9u2V06Uxa2fz1puvw48KrN-Sc87whJwguCb4mGLMbR0jKSIgxDzOSZCE_CgYkSdKQsvTt-Nf5NDhzboVxzDBLB4Gdt7aUCsJnqGQDBZo3fjikDZptdaE_uytdaVUb9CRNrezONbJy6M4spVGAxtJaDRZ1-a1stPdJU6CJWepcN2jULvaiqte5Nnv9PDgpPQEuDnMYvN7fvYwfw-nsYTIeTUMVk7gJOWM5LqIsKyCBrMwpz6VSeRL7IROQtOQ0xazAEY29RqgEgBRHRBXA0iyOhsFtz920-RoKBaaxshIbq9fS7kQttfirGL0Ui_pDeGDMM-IBVweArd9bcI1Y1a01_s2CMs4wp3HEvYv0LmVr5yyU3xsIFl03ou9G-G5E143oMrTPOO81_od-yP-HvgCqnJVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787082438</pqid></control><display><type>article</type><title>Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Othonos, Andreas ; Lioudakis, Emmanouil ; Nassiopoulou, AG</creator><creatorcontrib>Othonos, Andreas ; Lioudakis, Emmanouil ; Nassiopoulou, AG</creatorcontrib><description>We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Transient photoinduced absorption techniques have been employed to investigate the effects of surface-related states on the relaxation dynamics of photogenerated carriers in 2.8 nm oxidized silicon NCs. Independent of the excitation photon energy, non-degenerate measurements reveal several distinct relaxation regions corresponding to relaxation of photoexcited carriers from the initial excited states, the lowest indirect states and the surface-related states. Furthermore, degenerate and non-degenerate measurements at difference excitation fluences reveal a linear dependence of the maximum of the photoinduced absorption (PA) signal and an identical decay, suggesting that Auger recombination does not play a significant role in these nanostructures even for fluence generating up to 20 carriers/NC.</description><identifier>ISSN: 1556-276X</identifier><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1007/s11671-008-9159-8</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Absorption ; Augers ; Chemistry and Materials Science ; Crystals ; Energy levels ; Excitation ; Fluence ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanocrystals ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Photons ; Recombination ; Silicon ; Surface chemistry</subject><ispartof>Nanoscale research letters, 2008-09, Vol.3 (9), p.315-320, Article 315</ispartof><rights>to the authors 2008</rights><rights>to the authors 2008. This work is published under http://creativecommons.org/licenses/by/2/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright ©2008 to the authors 2008 to the authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-877b0d399de5e9fb28baccb54baca5ea2f82607d032428b12aeee6031cde76943</citedby><cites>FETCH-LOGICAL-c414t-877b0d399de5e9fb28baccb54baca5ea2f82607d032428b12aeee6031cde76943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244891/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244891/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27928,27929,53795,53797</link.rule.ids></links><search><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Lioudakis, Emmanouil</creatorcontrib><creatorcontrib>Nassiopoulou, AG</creatorcontrib><title>Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><description>We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Transient photoinduced absorption techniques have been employed to investigate the effects of surface-related states on the relaxation dynamics of photogenerated carriers in 2.8 nm oxidized silicon NCs. Independent of the excitation photon energy, non-degenerate measurements reveal several distinct relaxation regions corresponding to relaxation of photoexcited carriers from the initial excited states, the lowest indirect states and the surface-related states. Furthermore, degenerate and non-degenerate measurements at difference excitation fluences reveal a linear dependence of the maximum of the photoinduced absorption (PA) signal and an identical decay, suggesting that Auger recombination does not play a significant role in these nanostructures even for fluence generating up to 20 carriers/NC.</description><subject>Absorption</subject><subject>Augers</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Energy levels</subject><subject>Excitation</subject><subject>Fluence</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanocrystals</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Photons</subject><subject>Recombination</subject><subject>Silicon</subject><subject>Surface chemistry</subject><issn>1556-276X</issn><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1LwzAYhYsoOKc_wLuA19Uk_Uh6I4zhx2A4cArehTR9u2V06Uxa2fz1puvw48KrN-Sc87whJwguCb4mGLMbR0jKSIgxDzOSZCE_CgYkSdKQsvTt-Nf5NDhzboVxzDBLB4Gdt7aUCsJnqGQDBZo3fjikDZptdaE_uytdaVUb9CRNrezONbJy6M4spVGAxtJaDRZ1-a1stPdJU6CJWepcN2jULvaiqte5Nnv9PDgpPQEuDnMYvN7fvYwfw-nsYTIeTUMVk7gJOWM5LqIsKyCBrMwpz6VSeRL7IROQtOQ0xazAEY29RqgEgBRHRBXA0iyOhsFtz920-RoKBaaxshIbq9fS7kQttfirGL0Ui_pDeGDMM-IBVweArd9bcI1Y1a01_s2CMs4wp3HEvYv0LmVr5yyU3xsIFl03ou9G-G5E143oMrTPOO81_od-yP-HvgCqnJVg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Othonos, Andreas</creator><creator>Lioudakis, Emmanouil</creator><creator>Nassiopoulou, AG</creator><general>Springer New York</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20080901</creationdate><title>Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination</title><author>Othonos, Andreas ; Lioudakis, Emmanouil ; Nassiopoulou, AG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-877b0d399de5e9fb28baccb54baca5ea2f82607d032428b12aeee6031cde76943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Absorption</topic><topic>Augers</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Energy levels</topic><topic>Excitation</topic><topic>Fluence</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanocrystals</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Photons</topic><topic>Recombination</topic><topic>Silicon</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Othonos, Andreas</creatorcontrib><creatorcontrib>Lioudakis, Emmanouil</creatorcontrib><creatorcontrib>Nassiopoulou, AG</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Othonos, Andreas</au><au>Lioudakis, Emmanouil</au><au>Nassiopoulou, AG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>3</volume><issue>9</issue><spage>315</spage><epage>320</epage><pages>315-320</pages><artnum>315</artnum><issn>1556-276X</issn><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>We have studied ultrafast carrier dynamics in oxidized silicon nanocrystals (NCs) and the role that surface-related states play in the various relaxation mechanisms over a broad range of photon excitation energy corresponding to energy levels below and above the direct bandgap of the formed NCs. Transient photoinduced absorption techniques have been employed to investigate the effects of surface-related states on the relaxation dynamics of photogenerated carriers in 2.8 nm oxidized silicon NCs. Independent of the excitation photon energy, non-degenerate measurements reveal several distinct relaxation regions corresponding to relaxation of photoexcited carriers from the initial excited states, the lowest indirect states and the surface-related states. Furthermore, degenerate and non-degenerate measurements at difference excitation fluences reveal a linear dependence of the maximum of the photoinduced absorption (PA) signal and an identical decay, suggesting that Auger recombination does not play a significant role in these nanostructures even for fluence generating up to 20 carriers/NC.</abstract><cop>New York</cop><pub>Springer New York</pub><doi>10.1007/s11671-008-9159-8</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-276X |
ispartof | Nanoscale research letters, 2008-09, Vol.3 (9), p.315-320, Article 315 |
issn | 1556-276X 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244891 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Absorption Augers Chemistry and Materials Science Crystals Energy levels Excitation Fluence Materials Science Molecular Medicine Nano Express Nanochemistry Nanocrystals Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Photons Recombination Silicon Surface chemistry |
title | Surface-Related States in Oxidized Silicon Nanocrystals Enhance Carrier Relaxation and Inhibit Auger Recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Related%20States%20in%20Oxidized%20Silicon%20Nanocrystals%20Enhance%20Carrier%20Relaxation%20and%20Inhibit%20Auger%20Recombination&rft.jtitle=Nanoscale%20research%20letters&rft.au=Othonos,%20Andreas&rft.date=2008-09-01&rft.volume=3&rft.issue=9&rft.spage=315&rft.epage=320&rft.pages=315-320&rft.artnum=315&rft.issn=1556-276X&rft.eissn=1556-276X&rft_id=info:doi/10.1007/s11671-008-9159-8&rft_dat=%3Cproquest_pubme%3E2787082438%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787082438&rft_id=info:pmid/&rfr_iscdi=true |