Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype

The runt‐related protein‐2 (RUNX2) is a DNA‐binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2012-01, Vol.113 (1), p.282-292
Hauptverfasser: Pierce, Adam D., Anglin, Ian E., Vitolo, Michele I., Mochin, Maria T., Underwood, Karen F., Goldblum, Simeon E., Kommineni, Sravya, Passaniti, Antonino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 1
container_start_page 282
container_title Journal of cellular biochemistry
container_volume 113
creator Pierce, Adam D.
Anglin, Ian E.
Vitolo, Michele I.
Mochin, Maria T.
Underwood, Karen F.
Goldblum, Simeon E.
Kommineni, Sravya
Passaniti, Antonino
description The runt‐related protein‐2 (RUNX2) is a DNA‐binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post‐translational phosphorylation that are cell cycle‐specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S‐phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co‐incided with RUNX2 occupancy of the cyclin‐dependent kinase (cdk) inhibitor p21Cip1 promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C‐terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose‐stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose‐activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis. J. Cell. Biochem. 113: 282–292, 2012. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jcb.23354
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912639840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5184-299a1ee45aa0ebb7eb6f658363daa6219a3e9dfb1484fb28095346bb2a1e87a23</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9AuSEOaf0VJ74g0RVdqFZFAiq4WXYy2XXrjYPtbbv_Hi9pV3BA8siHeebxWC9Crwk-IRjT0-vWnFDGKv4EzQiWdckF50_RDNcMl5QReoRexHiNMZaS0efoiBJJGCVshm4Wbtv6CKVuk73VCbri69XlT1qMax9zhZ3TyfqhGIPf-ASxgKHzaQ3Oale04Ny-42wPYeL00OXKZ2X9CgbbZhMMPu1GeIme9dpFePVwH6Or84_f55_K5ZfF5_mHZdlWpOEllVITAF5pjcGYGozoRdUwwTqtRV5dM5BdbwhveG9og2XFuDCG5qmm1pQdo_eTd9yaDXQtDClop8ZgNzrslNdW_dsZ7Fqt_K1ilPOK1lnw9kEQ_K8txKQ2Nu7_qgfw26gkoYLJhuNMvpvINvgYA_SHVwhW-2xUzkb9ySazb_5e60A-hpGB0wm4sw52_zepi_nZo7KcJmxMcH-Y0OFGiZrVlfpxuVDnePkNXzRCSfYbw1-q3w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912639840</pqid></control><display><type>article</type><title>Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Pierce, Adam D. ; Anglin, Ian E. ; Vitolo, Michele I. ; Mochin, Maria T. ; Underwood, Karen F. ; Goldblum, Simeon E. ; Kommineni, Sravya ; Passaniti, Antonino</creator><creatorcontrib>Pierce, Adam D. ; Anglin, Ian E. ; Vitolo, Michele I. ; Mochin, Maria T. ; Underwood, Karen F. ; Goldblum, Simeon E. ; Kommineni, Sravya ; Passaniti, Antonino</creatorcontrib><description>The runt‐related protein‐2 (RUNX2) is a DNA‐binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post‐translational phosphorylation that are cell cycle‐specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S‐phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co‐incided with RUNX2 occupancy of the cyclin‐dependent kinase (cdk) inhibitor p21Cip1 promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C‐terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose‐stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose‐activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis. J. Cell. Biochem. 113: 282–292, 2012. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.23354</identifier><identifier>PMID: 21913213</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Cell cycle ; Cell Cycle - physiology ; Cell Division ; Cell Proliferation ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; DNA-Binding Proteins - genetics ; Endothelial cell ; Endothelial Cells - physiology ; Gene Expression Regulation ; Glucose ; Glucose - metabolism ; Humans ; Neoplasms - metabolism ; Neovascularization, Physiologic ; Phosphorylation ; Promoter Regions, Genetic ; Transcription</subject><ispartof>Journal of cellular biochemistry, 2012-01, Vol.113 (1), p.282-292</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5184-299a1ee45aa0ebb7eb6f658363daa6219a3e9dfb1484fb28095346bb2a1e87a23</citedby><cites>FETCH-LOGICAL-c5184-299a1ee45aa0ebb7eb6f658363daa6219a3e9dfb1484fb28095346bb2a1e87a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.23354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.23354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21913213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierce, Adam D.</creatorcontrib><creatorcontrib>Anglin, Ian E.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Mochin, Maria T.</creatorcontrib><creatorcontrib>Underwood, Karen F.</creatorcontrib><creatorcontrib>Goldblum, Simeon E.</creatorcontrib><creatorcontrib>Kommineni, Sravya</creatorcontrib><creatorcontrib>Passaniti, Antonino</creatorcontrib><title>Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>The runt‐related protein‐2 (RUNX2) is a DNA‐binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post‐translational phosphorylation that are cell cycle‐specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S‐phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co‐incided with RUNX2 occupancy of the cyclin‐dependent kinase (cdk) inhibitor p21Cip1 promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C‐terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose‐stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose‐activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis. J. Cell. Biochem. 113: 282–292, 2012. © 2011 Wiley Periodicals, Inc.</description><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Division</subject><subject>Cell Proliferation</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Endothelial cell</subject><subject>Endothelial Cells - physiology</subject><subject>Gene Expression Regulation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Neoplasms - metabolism</subject><subject>Neovascularization, Physiologic</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Transcription</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9AuSEOaf0VJ74g0RVdqFZFAiq4WXYy2XXrjYPtbbv_Hi9pV3BA8siHeebxWC9Crwk-IRjT0-vWnFDGKv4EzQiWdckF50_RDNcMl5QReoRexHiNMZaS0efoiBJJGCVshm4Wbtv6CKVuk73VCbri69XlT1qMax9zhZ3TyfqhGIPf-ASxgKHzaQ3Oale04Ny-42wPYeL00OXKZ2X9CgbbZhMMPu1GeIme9dpFePVwH6Or84_f55_K5ZfF5_mHZdlWpOEllVITAF5pjcGYGozoRdUwwTqtRV5dM5BdbwhveG9og2XFuDCG5qmm1pQdo_eTd9yaDXQtDClop8ZgNzrslNdW_dsZ7Fqt_K1ilPOK1lnw9kEQ_K8txKQ2Nu7_qgfw26gkoYLJhuNMvpvINvgYA_SHVwhW-2xUzkb9ySazb_5e60A-hpGB0wm4sw52_zepi_nZo7KcJmxMcH-Y0OFGiZrVlfpxuVDnePkNXzRCSfYbw1-q3w</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Pierce, Adam D.</creator><creator>Anglin, Ian E.</creator><creator>Vitolo, Michele I.</creator><creator>Mochin, Maria T.</creator><creator>Underwood, Karen F.</creator><creator>Goldblum, Simeon E.</creator><creator>Kommineni, Sravya</creator><creator>Passaniti, Antonino</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype</title><author>Pierce, Adam D. ; Anglin, Ian E. ; Vitolo, Michele I. ; Mochin, Maria T. ; Underwood, Karen F. ; Goldblum, Simeon E. ; Kommineni, Sravya ; Passaniti, Antonino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5184-299a1ee45aa0ebb7eb6f658363daa6219a3e9dfb1484fb28095346bb2a1e87a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Division</topic><topic>Cell Proliferation</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Endothelial cell</topic><topic>Endothelial Cells - physiology</topic><topic>Gene Expression Regulation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Neoplasms - metabolism</topic><topic>Neovascularization, Physiologic</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, Adam D.</creatorcontrib><creatorcontrib>Anglin, Ian E.</creatorcontrib><creatorcontrib>Vitolo, Michele I.</creatorcontrib><creatorcontrib>Mochin, Maria T.</creatorcontrib><creatorcontrib>Underwood, Karen F.</creatorcontrib><creatorcontrib>Goldblum, Simeon E.</creatorcontrib><creatorcontrib>Kommineni, Sravya</creatorcontrib><creatorcontrib>Passaniti, Antonino</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, Adam D.</au><au>Anglin, Ian E.</au><au>Vitolo, Michele I.</au><au>Mochin, Maria T.</au><au>Underwood, Karen F.</au><au>Goldblum, Simeon E.</au><au>Kommineni, Sravya</au><au>Passaniti, Antonino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2012-01</date><risdate>2012</risdate><volume>113</volume><issue>1</issue><spage>282</spage><epage>292</epage><pages>282-292</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>The runt‐related protein‐2 (RUNX2) is a DNA‐binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post‐translational phosphorylation that are cell cycle‐specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S‐phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co‐incided with RUNX2 occupancy of the cyclin‐dependent kinase (cdk) inhibitor p21Cip1 promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C‐terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose‐stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose‐activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis. J. Cell. Biochem. 113: 282–292, 2012. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21913213</pmid><doi>10.1002/jcb.23354</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2012-01, Vol.113 (1), p.282-292
issn 0730-2312
1097-4644
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244527
source MEDLINE; Wiley Online Library All Journals
subjects Cell cycle
Cell Cycle - physiology
Cell Division
Cell Proliferation
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Cyclin-Dependent Kinase Inhibitor p21 - genetics
DNA-Binding Proteins - genetics
Endothelial cell
Endothelial Cells - physiology
Gene Expression Regulation
Glucose
Glucose - metabolism
Humans
Neoplasms - metabolism
Neovascularization, Physiologic
Phosphorylation
Promoter Regions, Genetic
Transcription
title Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-activated%20RUNX2%20phosphorylation%20promotes%20endothelial%20cell%20proliferation%20and%20an%20angiogenic%20phenotype&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Pierce,%20Adam%20D.&rft.date=2012-01&rft.volume=113&rft.issue=1&rft.spage=282&rft.epage=292&rft.pages=282-292&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.23354&rft_dat=%3Cproquest_pubme%3E912639840%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912639840&rft_id=info:pmid/21913213&rfr_iscdi=true