Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning
J. Neurochem. (2012) 120, 302–313. The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis ele...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2012-01, Vol.120 (2), p.302-313 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 2 |
container_start_page | 302 |
container_title | Journal of neurochemistry |
container_volume | 120 |
creator | Levano, Kelly Punia, Vineet Raghunath, Michael Debata, Priya Ranjan Curcio, Gina Marie Mogha, Amit Purkayastha, Sudarshana McCloskey, Dan Fata, Jimmie Banerjee, Probal |
description | J. Neurochem. (2012) 120, 302–313.
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter‐1 (TAT‐1), which is an ortholog of a mammalian P‐type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus‐dependent learning, but no hyper‐anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM‐APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (Vmax) of PM‐APLT without any change in its signature parameter Km in the neuronal N18 cells. Conversely, expression of a P‐type phosphorylation‐site mutant of Atp8a1 (Atp8a1*) caused a decrease in Vmax of PM‐APLT without significantly altering its Km. The Atp8a1*‐expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM‐APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.
A decade‐long search for the enzyme (termed ‘PM‐APLT’) that moves the lipid molecule phosphatidylserine (PS) from the outer to the inner face of the cell membrane has yielded the energy‐producing protein Atp8a1. Atp8a1 deficiency is associated with PS exposure in nerve cells and functional impairment in the nerve‐filled brain region hippocampus. Atp8a1 is most likely the PM‐APLT of nerve cells. |
doi_str_mv | 10.1111/j.1471-4159.2011.07543.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920791518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6003-b98d40219b59de4c9c316f0cae2202f9debe56a364bf764dbe07d6765537d3473</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYsvCX0AREuKU4m_HB5BWBRbQUi4guFmOPdm6pE42TtmGG_8ch5aycAFfbM0876sZz2RZjtEcp_N0PcdM4oJhruYEYTxHkjM6393KZsfE7WyGECEFRYycZPdiXCOEBRP4bnZCCEKy5GqWfT8butLg3EHtrYdgx9zH3MTYWm8GcPm1H1Z5t2pjtzKDd2MTofcBctgN0AfT-G8p3Ibch3zlu661ZtNtk0NwybMxY7K4ES8cdBAchCFvwPTBh8v72Z3aJNcHh_s0-_jq5YfF6-Li_fmbxdlFYQVCtKhU6RgiWFVcOWBWWYpFjayB1AypU6wCLgwVrKqlYK4CJJ2QgnMqHWWSnmbP977dttqAs6mG3jS66_3G9KNujdd_ZoJf6cv2q6aEUSlJMnhyMOjbqy3EQW98tNA0JkC7jVoRJBXmuPw3iUsuJVdTUY_-ItftdvrWCcKSYIpVgso9ZPs2xh7qY9EY6Wkf9FpPY9fT2PW0D_rnPuhdkj682fRR-GsBEvD4AJhoTVP3Jlgff3Occ4kkTtyzPXftGxj_uwD9drmYXklf7PU-DrA76k3_RQtJJdeflucaLcXi8wtF9Tv6A2o04zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911721319</pqid></control><display><type>article</type><title>Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Levano, Kelly ; Punia, Vineet ; Raghunath, Michael ; Debata, Priya Ranjan ; Curcio, Gina Marie ; Mogha, Amit ; Purkayastha, Sudarshana ; McCloskey, Dan ; Fata, Jimmie ; Banerjee, Probal</creator><creatorcontrib>Levano, Kelly ; Punia, Vineet ; Raghunath, Michael ; Debata, Priya Ranjan ; Curcio, Gina Marie ; Mogha, Amit ; Purkayastha, Sudarshana ; McCloskey, Dan ; Fata, Jimmie ; Banerjee, Probal</creatorcontrib><description>J. Neurochem. (2012) 120, 302–313.
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter‐1 (TAT‐1), which is an ortholog of a mammalian P‐type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus‐dependent learning, but no hyper‐anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM‐APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (Vmax) of PM‐APLT without any change in its signature parameter Km in the neuronal N18 cells. Conversely, expression of a P‐type phosphorylation‐site mutant of Atp8a1 (Atp8a1*) caused a decrease in Vmax of PM‐APLT without significantly altering its Km. The Atp8a1*‐expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM‐APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.
A decade‐long search for the enzyme (termed ‘PM‐APLT’) that moves the lipid molecule phosphatidylserine (PS) from the outer to the inner face of the cell membrane has yielded the energy‐producing protein Atp8a1. Atp8a1 deficiency is associated with PS exposure in nerve cells and functional impairment in the nerve‐filled brain region hippocampus. Atp8a1 is most likely the PM‐APLT of nerve cells.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2011.07543.x</identifier><identifier>PMID: 22007859</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphatases - deficiency ; Adenosinetriphosphatase ; aminophospholipid translocase ; Animals ; Annexin A5 - metabolism ; Apoptosis ; Atp8a1 ; Biological and medical sciences ; Brain ; Brain research ; Caenorhabditis elegans ; Cell Membrane - metabolism ; Cell membranes ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Data processing ; Dentate gyrus ; Electrophysiology ; Enzymes ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - genetics ; Germ cells ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - physiology ; Learning ; Lipids ; Male ; Mammalian cells ; Maze Learning - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation - genetics ; Nerves ; Neurochemistry ; Organ Culture Techniques ; phosphatidylserine ; Phosphatidylserines - metabolism ; Phospholipid Transfer Proteins - deficiency ; Phospholipid Transfer Proteins - metabolism ; Phosphorylation ; Phosphorylation - genetics ; Plasma ; Plasma membranes ; Protein Transport - genetics ; spatial memory ; translocase ; Translocation ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2012-01, Vol.120 (2), p.302-313</ispartof><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6003-b98d40219b59de4c9c316f0cae2202f9debe56a364bf764dbe07d6765537d3473</citedby><cites>FETCH-LOGICAL-c6003-b98d40219b59de4c9c316f0cae2202f9debe56a364bf764dbe07d6765537d3473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2011.07543.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2011.07543.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25557071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22007859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levano, Kelly</creatorcontrib><creatorcontrib>Punia, Vineet</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><creatorcontrib>Debata, Priya Ranjan</creatorcontrib><creatorcontrib>Curcio, Gina Marie</creatorcontrib><creatorcontrib>Mogha, Amit</creatorcontrib><creatorcontrib>Purkayastha, Sudarshana</creatorcontrib><creatorcontrib>McCloskey, Dan</creatorcontrib><creatorcontrib>Fata, Jimmie</creatorcontrib><creatorcontrib>Banerjee, Probal</creatorcontrib><title>Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2012) 120, 302–313.
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter‐1 (TAT‐1), which is an ortholog of a mammalian P‐type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus‐dependent learning, but no hyper‐anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM‐APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (Vmax) of PM‐APLT without any change in its signature parameter Km in the neuronal N18 cells. Conversely, expression of a P‐type phosphorylation‐site mutant of Atp8a1 (Atp8a1*) caused a decrease in Vmax of PM‐APLT without significantly altering its Km. The Atp8a1*‐expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM‐APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.
A decade‐long search for the enzyme (termed ‘PM‐APLT’) that moves the lipid molecule phosphatidylserine (PS) from the outer to the inner face of the cell membrane has yielded the energy‐producing protein Atp8a1. Atp8a1 deficiency is associated with PS exposure in nerve cells and functional impairment in the nerve‐filled brain region hippocampus. Atp8a1 is most likely the PM‐APLT of nerve cells.</description><subject>Adenosine Triphosphatases - deficiency</subject><subject>Adenosinetriphosphatase</subject><subject>aminophospholipid translocase</subject><subject>Animals</subject><subject>Annexin A5 - metabolism</subject><subject>Apoptosis</subject><subject>Atp8a1</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain research</subject><subject>Caenorhabditis elegans</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Data processing</subject><subject>Dentate gyrus</subject><subject>Electrophysiology</subject><subject>Enzymes</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - genetics</subject><subject>Germ cells</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiology</subject><subject>Learning</subject><subject>Lipids</subject><subject>Male</subject><subject>Mammalian cells</subject><subject>Maze Learning - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation - genetics</subject><subject>Nerves</subject><subject>Neurochemistry</subject><subject>Organ Culture Techniques</subject><subject>phosphatidylserine</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phospholipid Transfer Proteins - deficiency</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphorylation - genetics</subject><subject>Plasma</subject><subject>Plasma membranes</subject><subject>Protein Transport - genetics</subject><subject>spatial memory</subject><subject>translocase</subject><subject>Translocation</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2P0zAQhiMEYsvCX0AREuKU4m_HB5BWBRbQUi4guFmOPdm6pE42TtmGG_8ch5aycAFfbM0876sZz2RZjtEcp_N0PcdM4oJhruYEYTxHkjM6393KZsfE7WyGECEFRYycZPdiXCOEBRP4bnZCCEKy5GqWfT8butLg3EHtrYdgx9zH3MTYWm8GcPm1H1Z5t2pjtzKDd2MTofcBctgN0AfT-G8p3Ibch3zlu661ZtNtk0NwybMxY7K4ES8cdBAchCFvwPTBh8v72Z3aJNcHh_s0-_jq5YfF6-Li_fmbxdlFYQVCtKhU6RgiWFVcOWBWWYpFjayB1AypU6wCLgwVrKqlYK4CJJ2QgnMqHWWSnmbP977dttqAs6mG3jS66_3G9KNujdd_ZoJf6cv2q6aEUSlJMnhyMOjbqy3EQW98tNA0JkC7jVoRJBXmuPw3iUsuJVdTUY_-ItftdvrWCcKSYIpVgso9ZPs2xh7qY9EY6Wkf9FpPY9fT2PW0D_rnPuhdkj682fRR-GsBEvD4AJhoTVP3Jlgff3Occ4kkTtyzPXftGxj_uwD9drmYXklf7PU-DrA76k3_RQtJJdeflucaLcXi8wtF9Tv6A2o04zg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Levano, Kelly</creator><creator>Punia, Vineet</creator><creator>Raghunath, Michael</creator><creator>Debata, Priya Ranjan</creator><creator>Curcio, Gina Marie</creator><creator>Mogha, Amit</creator><creator>Purkayastha, Sudarshana</creator><creator>McCloskey, Dan</creator><creator>Fata, Jimmie</creator><creator>Banerjee, Probal</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201201</creationdate><title>Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning</title><author>Levano, Kelly ; Punia, Vineet ; Raghunath, Michael ; Debata, Priya Ranjan ; Curcio, Gina Marie ; Mogha, Amit ; Purkayastha, Sudarshana ; McCloskey, Dan ; Fata, Jimmie ; Banerjee, Probal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6003-b98d40219b59de4c9c316f0cae2202f9debe56a364bf764dbe07d6765537d3473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphatases - deficiency</topic><topic>Adenosinetriphosphatase</topic><topic>aminophospholipid translocase</topic><topic>Animals</topic><topic>Annexin A5 - metabolism</topic><topic>Apoptosis</topic><topic>Atp8a1</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain research</topic><topic>Caenorhabditis elegans</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Data processing</topic><topic>Dentate gyrus</topic><topic>Electrophysiology</topic><topic>Enzymes</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - genetics</topic><topic>Germ cells</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiology</topic><topic>Learning</topic><topic>Lipids</topic><topic>Male</topic><topic>Mammalian cells</topic><topic>Maze Learning - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation - genetics</topic><topic>Nerves</topic><topic>Neurochemistry</topic><topic>Organ Culture Techniques</topic><topic>phosphatidylserine</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phospholipid Transfer Proteins - deficiency</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphorylation - genetics</topic><topic>Plasma</topic><topic>Plasma membranes</topic><topic>Protein Transport - genetics</topic><topic>spatial memory</topic><topic>translocase</topic><topic>Translocation</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levano, Kelly</creatorcontrib><creatorcontrib>Punia, Vineet</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><creatorcontrib>Debata, Priya Ranjan</creatorcontrib><creatorcontrib>Curcio, Gina Marie</creatorcontrib><creatorcontrib>Mogha, Amit</creatorcontrib><creatorcontrib>Purkayastha, Sudarshana</creatorcontrib><creatorcontrib>McCloskey, Dan</creatorcontrib><creatorcontrib>Fata, Jimmie</creatorcontrib><creatorcontrib>Banerjee, Probal</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levano, Kelly</au><au>Punia, Vineet</au><au>Raghunath, Michael</au><au>Debata, Priya Ranjan</au><au>Curcio, Gina Marie</au><au>Mogha, Amit</au><au>Purkayastha, Sudarshana</au><au>McCloskey, Dan</au><au>Fata, Jimmie</au><au>Banerjee, Probal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2012-01</date><risdate>2012</risdate><volume>120</volume><issue>2</issue><spage>302</spage><epage>313</epage><pages>302-313</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>J. Neurochem. (2012) 120, 302–313.
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter‐1 (TAT‐1), which is an ortholog of a mammalian P‐type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus‐dependent learning, but no hyper‐anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM‐APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (Vmax) of PM‐APLT without any change in its signature parameter Km in the neuronal N18 cells. Conversely, expression of a P‐type phosphorylation‐site mutant of Atp8a1 (Atp8a1*) caused a decrease in Vmax of PM‐APLT without significantly altering its Km. The Atp8a1*‐expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM‐APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.
A decade‐long search for the enzyme (termed ‘PM‐APLT’) that moves the lipid molecule phosphatidylserine (PS) from the outer to the inner face of the cell membrane has yielded the energy‐producing protein Atp8a1. Atp8a1 deficiency is associated with PS exposure in nerve cells and functional impairment in the nerve‐filled brain region hippocampus. Atp8a1 is most likely the PM‐APLT of nerve cells.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22007859</pmid><doi>10.1111/j.1471-4159.2011.07543.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2012-01, Vol.120 (2), p.302-313 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243772 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - deficiency Adenosinetriphosphatase aminophospholipid translocase Animals Annexin A5 - metabolism Apoptosis Atp8a1 Biological and medical sciences Brain Brain research Caenorhabditis elegans Cell Membrane - metabolism Cell membranes Central nervous system Central neurotransmission. Neuromudulation. Pathways and receptors Data processing Dentate gyrus Electrophysiology Enzymes Female Fundamental and applied biological sciences. Psychology Gene Expression Regulation - genetics Germ cells Hippocampus Hippocampus - metabolism Hippocampus - physiology Learning Lipids Male Mammalian cells Maze Learning - physiology Mice Mice, Inbred C57BL Mice, Knockout Mutation - genetics Nerves Neurochemistry Organ Culture Techniques phosphatidylserine Phosphatidylserines - metabolism Phospholipid Transfer Proteins - deficiency Phospholipid Transfer Proteins - metabolism Phosphorylation Phosphorylation - genetics Plasma Plasma membranes Protein Transport - genetics spatial memory translocase Translocation Vertebrates: nervous system and sense organs |
title | Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atp8a1%20deficiency%20is%20associated%20with%20phosphatidylserine%20externalization%20in%20hippocampus%20and%20delayed%20hippocampus-dependent%20learning&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Levano,%20Kelly&rft.date=2012-01&rft.volume=120&rft.issue=2&rft.spage=302&rft.epage=313&rft.pages=302-313&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2011.07543.x&rft_dat=%3Cproquest_pubme%3E920791518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911721319&rft_id=info:pmid/22007859&rfr_iscdi=true |