Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment

The CHA2DS2-VASc score is a 10-point scale which allows cardiologists to easily identify potential stroke risk for patients with non-valvular fibrillation. In this article, we present a system based on natural language processing (lexicon and linguistic modules), including negation and speculation h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2011, Vol.2011, p.501-10
Hauptverfasser: Grouin, Cyril, Deléger, Louise, Rosier, Arnaud, Temal, Lynda, Dameron, Olivier, Van Hille, Pascal, Burgun, Anita, Zweigenbaum, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 501
container_title AMIA ... Annual Symposium proceedings
container_volume 2011
creator Grouin, Cyril
Deléger, Louise
Rosier, Arnaud
Temal, Lynda
Dameron, Olivier
Van Hille, Pascal
Burgun, Anita
Zweigenbaum, Pierre
description The CHA2DS2-VASc score is a 10-point scale which allows cardiologists to easily identify potential stroke risk for patients with non-valvular fibrillation. In this article, we present a system based on natural language processing (lexicon and linguistic modules), including negation and speculation handling, which extracts medical concepts from French clinical records and uses them as criteria to compute the CHA2DS2-VASc score. We evaluate this system by comparing its computed criteria with those obtained by human reading of the same clinical texts, and by assessing the impact of the observed differences on the resulting CHA2DS2-VASc scores. Given 21 patient records, 168 instances of criteria were computed, with an accuracy of 97.6%, and the accuracy of the 21 CHA2DS2-VASc scores was 85.7%. All differences in scores trigger the same alert, which means that system performance on this test set yields similar results to human reading of the texts.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912643011</sourcerecordid><originalsourceid>FETCH-LOGICAL-h214t-8bed3aca0bae68e11c1adb83a04d911b381195af67c1495117263ac268dd13c43</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosobk7_guROvCjkq23qhVDmx4SBF1PxrqRpaqNNM5N0KP55MzdFvQh5Oe-b55xDdqIxSpI8pjBLd4POKY6TPHscRQfOPUNIs4Sl-9EIY5QnCNJx9FEM3mjulQDC6OXggzQ9MA2Yzgp8scDxQ7EQwAlj5RlQfWOs3kTkm7dcfMnGGg1Ep3oleAd8cBwIQeDbYFRGhtMpp4FV7gVw56RzWvb-MNpreOfk0faeRPdXl3fTWTy_vb6ZFvO4xYj6mFWyJlxwWHGZMomQQLyuGOGQ1jlCFWEobMObNBOIhrVQhtOQxymra0QEJZPofMNdDpWWtQitLe_KpVWa2_fScFX-dXrVlk9mVRJMSUAHwOkG0P57Nivm5boGYUZZwtgKhezJtpk1r4N0vtTKCdl1vJdmcGWOcEoJROvk8e-xfsDfn0M-AQRnjuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912643011</pqid></control><display><type>article</type><title>Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Grouin, Cyril ; Deléger, Louise ; Rosier, Arnaud ; Temal, Lynda ; Dameron, Olivier ; Van Hille, Pascal ; Burgun, Anita ; Zweigenbaum, Pierre</creator><creatorcontrib>Grouin, Cyril ; Deléger, Louise ; Rosier, Arnaud ; Temal, Lynda ; Dameron, Olivier ; Van Hille, Pascal ; Burgun, Anita ; Zweigenbaum, Pierre</creatorcontrib><description>The CHA2DS2-VASc score is a 10-point scale which allows cardiologists to easily identify potential stroke risk for patients with non-valvular fibrillation. In this article, we present a system based on natural language processing (lexicon and linguistic modules), including negation and speculation handling, which extracts medical concepts from French clinical records and uses them as criteria to compute the CHA2DS2-VASc score. We evaluate this system by comparing its computed criteria with those obtained by human reading of the same clinical texts, and by assessing the impact of the observed differences on the resulting CHA2DS2-VASc scores. Given 21 patient records, 168 instances of criteria were computed, with an accuracy of 97.6%, and the accuracy of the 21 CHA2DS2-VASc scores was 85.7%. All differences in scores trigger the same alert, which means that system performance on this test set yields similar results to human reading of the texts.</description><identifier>ISSN: 1942-597X</identifier><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 22195104</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Atrial Fibrillation - complications ; Cardiology ; Electronic Health Records ; Human health and pathology ; Humans ; Language ; Life Sciences ; Natural Language Processing ; Risk Assessment - methods ; Stroke - etiology ; Thromboembolism - etiology</subject><ispartof>AMIA ... Annual Symposium proceedings, 2011, Vol.2011, p.501-10</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2011 AMIA - All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4556-5702 ; 0000-0001-5809-188X ; 0000-0001-6855-4366 ; 0000-0003-1399-4828 ; 0000-0001-8410-4808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243195/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243195/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22195104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00748588$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grouin, Cyril</creatorcontrib><creatorcontrib>Deléger, Louise</creatorcontrib><creatorcontrib>Rosier, Arnaud</creatorcontrib><creatorcontrib>Temal, Lynda</creatorcontrib><creatorcontrib>Dameron, Olivier</creatorcontrib><creatorcontrib>Van Hille, Pascal</creatorcontrib><creatorcontrib>Burgun, Anita</creatorcontrib><creatorcontrib>Zweigenbaum, Pierre</creatorcontrib><title>Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>The CHA2DS2-VASc score is a 10-point scale which allows cardiologists to easily identify potential stroke risk for patients with non-valvular fibrillation. In this article, we present a system based on natural language processing (lexicon and linguistic modules), including negation and speculation handling, which extracts medical concepts from French clinical records and uses them as criteria to compute the CHA2DS2-VASc score. We evaluate this system by comparing its computed criteria with those obtained by human reading of the same clinical texts, and by assessing the impact of the observed differences on the resulting CHA2DS2-VASc scores. Given 21 patient records, 168 instances of criteria were computed, with an accuracy of 97.6%, and the accuracy of the 21 CHA2DS2-VASc scores was 85.7%. All differences in scores trigger the same alert, which means that system performance on this test set yields similar results to human reading of the texts.</description><subject>Atrial Fibrillation - complications</subject><subject>Cardiology</subject><subject>Electronic Health Records</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Language</subject><subject>Life Sciences</subject><subject>Natural Language Processing</subject><subject>Risk Assessment - methods</subject><subject>Stroke - etiology</subject><subject>Thromboembolism - etiology</subject><issn>1942-597X</issn><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV1LwzAUhosobk7_guROvCjkq23qhVDmx4SBF1PxrqRpaqNNM5N0KP55MzdFvQh5Oe-b55xDdqIxSpI8pjBLd4POKY6TPHscRQfOPUNIs4Sl-9EIY5QnCNJx9FEM3mjulQDC6OXggzQ9MA2Yzgp8scDxQ7EQwAlj5RlQfWOs3kTkm7dcfMnGGg1Ep3oleAd8cBwIQeDbYFRGhtMpp4FV7gVw56RzWvb-MNpreOfk0faeRPdXl3fTWTy_vb6ZFvO4xYj6mFWyJlxwWHGZMomQQLyuGOGQ1jlCFWEobMObNBOIhrVQhtOQxymra0QEJZPofMNdDpWWtQitLe_KpVWa2_fScFX-dXrVlk9mVRJMSUAHwOkG0P57Nivm5boGYUZZwtgKhezJtpk1r4N0vtTKCdl1vJdmcGWOcEoJROvk8e-xfsDfn0M-AQRnjuY</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Grouin, Cyril</creator><creator>Deléger, Louise</creator><creator>Rosier, Arnaud</creator><creator>Temal, Lynda</creator><creator>Dameron, Olivier</creator><creator>Van Hille, Pascal</creator><creator>Burgun, Anita</creator><creator>Zweigenbaum, Pierre</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4556-5702</orcidid><orcidid>https://orcid.org/0000-0001-5809-188X</orcidid><orcidid>https://orcid.org/0000-0001-6855-4366</orcidid><orcidid>https://orcid.org/0000-0003-1399-4828</orcidid><orcidid>https://orcid.org/0000-0001-8410-4808</orcidid></search><sort><creationdate>2011</creationdate><title>Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment</title><author>Grouin, Cyril ; Deléger, Louise ; Rosier, Arnaud ; Temal, Lynda ; Dameron, Olivier ; Van Hille, Pascal ; Burgun, Anita ; Zweigenbaum, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h214t-8bed3aca0bae68e11c1adb83a04d911b381195af67c1495117263ac268dd13c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atrial Fibrillation - complications</topic><topic>Cardiology</topic><topic>Electronic Health Records</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Language</topic><topic>Life Sciences</topic><topic>Natural Language Processing</topic><topic>Risk Assessment - methods</topic><topic>Stroke - etiology</topic><topic>Thromboembolism - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grouin, Cyril</creatorcontrib><creatorcontrib>Deléger, Louise</creatorcontrib><creatorcontrib>Rosier, Arnaud</creatorcontrib><creatorcontrib>Temal, Lynda</creatorcontrib><creatorcontrib>Dameron, Olivier</creatorcontrib><creatorcontrib>Van Hille, Pascal</creatorcontrib><creatorcontrib>Burgun, Anita</creatorcontrib><creatorcontrib>Zweigenbaum, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grouin, Cyril</au><au>Deléger, Louise</au><au>Rosier, Arnaud</au><au>Temal, Lynda</au><au>Dameron, Olivier</au><au>Van Hille, Pascal</au><au>Burgun, Anita</au><au>Zweigenbaum, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2011</date><risdate>2011</risdate><volume>2011</volume><spage>501</spage><epage>10</epage><pages>501-10</pages><issn>1942-597X</issn><eissn>1559-4076</eissn><abstract>The CHA2DS2-VASc score is a 10-point scale which allows cardiologists to easily identify potential stroke risk for patients with non-valvular fibrillation. In this article, we present a system based on natural language processing (lexicon and linguistic modules), including negation and speculation handling, which extracts medical concepts from French clinical records and uses them as criteria to compute the CHA2DS2-VASc score. We evaluate this system by comparing its computed criteria with those obtained by human reading of the same clinical texts, and by assessing the impact of the observed differences on the resulting CHA2DS2-VASc scores. Given 21 patient records, 168 instances of criteria were computed, with an accuracy of 97.6%, and the accuracy of the 21 CHA2DS2-VASc scores was 85.7%. All differences in scores trigger the same alert, which means that system performance on this test set yields similar results to human reading of the texts.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>22195104</pmid><tpages>-490</tpages><orcidid>https://orcid.org/0000-0003-4556-5702</orcidid><orcidid>https://orcid.org/0000-0001-5809-188X</orcidid><orcidid>https://orcid.org/0000-0001-6855-4366</orcidid><orcidid>https://orcid.org/0000-0003-1399-4828</orcidid><orcidid>https://orcid.org/0000-0001-8410-4808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1942-597X
ispartof AMIA ... Annual Symposium proceedings, 2011, Vol.2011, p.501-10
issn 1942-597X
1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243195
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Atrial Fibrillation - complications
Cardiology
Electronic Health Records
Human health and pathology
Humans
Language
Life Sciences
Natural Language Processing
Risk Assessment - methods
Stroke - etiology
Thromboembolism - etiology
title Automatic computation of CHA2DS2-VASc score: information extraction from clinical texts for thromboembolism risk assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20computation%20of%20CHA2DS2-VASc%20score:%20information%20extraction%20from%20clinical%20texts%20for%20thromboembolism%20risk%20assessment&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Grouin,%20Cyril&rft.date=2011&rft.volume=2011&rft.spage=501&rft.epage=10&rft.pages=501-10&rft.issn=1942-597X&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E912643011%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912643011&rft_id=info:pmid/22195104&rfr_iscdi=true