Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms

The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2011, Vol.2011, p.274-283
Hauptverfasser: Conway, Mike, Berg, Richard L, Carrell, David, Denny, Joshua C, Kho, Abel N, Kullo, Iftikhar J, Linneman, James G, Pacheco, Jennifer A, Peissig, Peggy, Rasmussen, Luke, Weston, Noah, Chute, Christopher G, Pathak, Jyotishman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue
container_start_page 274
container_title AMIA ... Annual Symposium proceedings
container_volume 2011
creator Conway, Mike
Berg, Richard L
Carrell, David
Denny, Joshua C
Kho, Abel N
Kullo, Iftikhar J
Linneman, James G
Pacheco, Jennifer A
Peissig, Peggy
Rasmussen, Luke
Weston, Noah
Chute, Christopher G
Pathak, Jyotishman
description The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is a prerequisite for the automatic identification of study-eligible patients from Electronic Health Records. As part of the wider process of representation development, this paper reports on an analysis of fourteen Electronic Health Record oriented phenotyping algorithms (developed as part of the eMERGE project) in terms of their constituent data elements, types of logic used and temporal characteristics. We discovered that the majority of eMERGE algorithms analyzed include complex, nested boolean logic and negation, with several dependent on cardinality constraints and complex temporal logic. Insights gained from the study will be used to augment the CDISC Protocol Representation Model.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912641053</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-1d6d574cb27e7fbed0f9e286234ab5b2132f142861cce3581ff5fd8077bc41cb3</originalsourceid><addsrcrecordid>eNpVkE9LxDAQxYsg7rr6FSQ3T4X8aZr2IizL6goLgui5pMmkraRJTbNi_fRWXEVPw3sz_N5jTpIl4bxMMyzyRXI-ji8YZ4IX-VmyoJSUHItymZi1k3b66FyDYguohQjBN-CgixOSTiPl-8HC-5f0Bm0tqBi86xTagbSxRY-gfNDIhw5cBI2GFpyP0_BFlLaZ_dj240VyaqQd4fI4V8nz7fZps0v3D3f3m_U-HUiBY0p0rrnIVE0FCFODxqYEWuSUZbLmNSWMGpLNBlEKGC-IMdzoAgtRq4yomq2Sm2_ucKh70GruFKSthtD1MkyVl131f-O6tmr8W8VoxkhRzoDrIyD41wOMseq7UYG10oE_jFVJaJ4RzNl8efU36jfj57fsEzI5eK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912641053</pqid></control><display><type>article</type><title>Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Conway, Mike ; Berg, Richard L ; Carrell, David ; Denny, Joshua C ; Kho, Abel N ; Kullo, Iftikhar J ; Linneman, James G ; Pacheco, Jennifer A ; Peissig, Peggy ; Rasmussen, Luke ; Weston, Noah ; Chute, Christopher G ; Pathak, Jyotishman</creator><creatorcontrib>Conway, Mike ; Berg, Richard L ; Carrell, David ; Denny, Joshua C ; Kho, Abel N ; Kullo, Iftikhar J ; Linneman, James G ; Pacheco, Jennifer A ; Peissig, Peggy ; Rasmussen, Luke ; Weston, Noah ; Chute, Christopher G ; Pathak, Jyotishman</creatorcontrib><description>The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is a prerequisite for the automatic identification of study-eligible patients from Electronic Health Records. As part of the wider process of representation development, this paper reports on an analysis of fourteen Electronic Health Record oriented phenotyping algorithms (developed as part of the eMERGE project) in terms of their constituent data elements, types of logic used and temporal characteristics. We discovered that the majority of eMERGE algorithms analyzed include complex, nested boolean logic and negation, with several dependent on cardinality constraints and complex temporal logic. Insights gained from the study will be used to augment the CDISC Protocol Representation Model.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 22195079</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Diagnosis, Differential ; Electronic Health Records ; Hashimoto Disease - diagnosis ; Humans ; Hypothyroidism - diagnosis ; Phenotype</subject><ispartof>AMIA ... Annual Symposium proceedings, 2011, Vol.2011, p.274-283</ispartof><rights>2011 AMIA - All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243189/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243189/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22195079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conway, Mike</creatorcontrib><creatorcontrib>Berg, Richard L</creatorcontrib><creatorcontrib>Carrell, David</creatorcontrib><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Kho, Abel N</creatorcontrib><creatorcontrib>Kullo, Iftikhar J</creatorcontrib><creatorcontrib>Linneman, James G</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Peissig, Peggy</creatorcontrib><creatorcontrib>Rasmussen, Luke</creatorcontrib><creatorcontrib>Weston, Noah</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Pathak, Jyotishman</creatorcontrib><title>Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is a prerequisite for the automatic identification of study-eligible patients from Electronic Health Records. As part of the wider process of representation development, this paper reports on an analysis of fourteen Electronic Health Record oriented phenotyping algorithms (developed as part of the eMERGE project) in terms of their constituent data elements, types of logic used and temporal characteristics. We discovered that the majority of eMERGE algorithms analyzed include complex, nested boolean logic and negation, with several dependent on cardinality constraints and complex temporal logic. Insights gained from the study will be used to augment the CDISC Protocol Representation Model.</description><subject>Algorithms</subject><subject>Diagnosis, Differential</subject><subject>Electronic Health Records</subject><subject>Hashimoto Disease - diagnosis</subject><subject>Humans</subject><subject>Hypothyroidism - diagnosis</subject><subject>Phenotype</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE9LxDAQxYsg7rr6FSQ3T4X8aZr2IizL6goLgui5pMmkraRJTbNi_fRWXEVPw3sz_N5jTpIl4bxMMyzyRXI-ji8YZ4IX-VmyoJSUHItymZi1k3b66FyDYguohQjBN-CgixOSTiPl-8HC-5f0Bm0tqBi86xTagbSxRY-gfNDIhw5cBI2GFpyP0_BFlLaZ_dj240VyaqQd4fI4V8nz7fZps0v3D3f3m_U-HUiBY0p0rrnIVE0FCFODxqYEWuSUZbLmNSWMGpLNBlEKGC-IMdzoAgtRq4yomq2Sm2_ucKh70GruFKSthtD1MkyVl131f-O6tmr8W8VoxkhRzoDrIyD41wOMseq7UYG10oE_jFVJaJ4RzNl8efU36jfj57fsEzI5eK8</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Conway, Mike</creator><creator>Berg, Richard L</creator><creator>Carrell, David</creator><creator>Denny, Joshua C</creator><creator>Kho, Abel N</creator><creator>Kullo, Iftikhar J</creator><creator>Linneman, James G</creator><creator>Pacheco, Jennifer A</creator><creator>Peissig, Peggy</creator><creator>Rasmussen, Luke</creator><creator>Weston, Noah</creator><creator>Chute, Christopher G</creator><creator>Pathak, Jyotishman</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2011</creationdate><title>Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms</title><author>Conway, Mike ; Berg, Richard L ; Carrell, David ; Denny, Joshua C ; Kho, Abel N ; Kullo, Iftikhar J ; Linneman, James G ; Pacheco, Jennifer A ; Peissig, Peggy ; Rasmussen, Luke ; Weston, Noah ; Chute, Christopher G ; Pathak, Jyotishman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-1d6d574cb27e7fbed0f9e286234ab5b2132f142861cce3581ff5fd8077bc41cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Diagnosis, Differential</topic><topic>Electronic Health Records</topic><topic>Hashimoto Disease - diagnosis</topic><topic>Humans</topic><topic>Hypothyroidism - diagnosis</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conway, Mike</creatorcontrib><creatorcontrib>Berg, Richard L</creatorcontrib><creatorcontrib>Carrell, David</creatorcontrib><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Kho, Abel N</creatorcontrib><creatorcontrib>Kullo, Iftikhar J</creatorcontrib><creatorcontrib>Linneman, James G</creatorcontrib><creatorcontrib>Pacheco, Jennifer A</creatorcontrib><creatorcontrib>Peissig, Peggy</creatorcontrib><creatorcontrib>Rasmussen, Luke</creatorcontrib><creatorcontrib>Weston, Noah</creatorcontrib><creatorcontrib>Chute, Christopher G</creatorcontrib><creatorcontrib>Pathak, Jyotishman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conway, Mike</au><au>Berg, Richard L</au><au>Carrell, David</au><au>Denny, Joshua C</au><au>Kho, Abel N</au><au>Kullo, Iftikhar J</au><au>Linneman, James G</au><au>Pacheco, Jennifer A</au><au>Peissig, Peggy</au><au>Rasmussen, Luke</au><au>Weston, Noah</au><au>Chute, Christopher G</au><au>Pathak, Jyotishman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2011</date><risdate>2011</risdate><volume>2011</volume><spage>274</spage><epage>283</epage><pages>274-283</pages><eissn>1559-4076</eissn><abstract>The need for formal representations of eligibility criteria for clinical trials - and for phenotyping more generally - has been recognized for some time. Indeed, the availability of a formal computable representation that adequately reflects the types of data and logic evidenced in trial designs is a prerequisite for the automatic identification of study-eligible patients from Electronic Health Records. As part of the wider process of representation development, this paper reports on an analysis of fourteen Electronic Health Record oriented phenotyping algorithms (developed as part of the eMERGE project) in terms of their constituent data elements, types of logic used and temporal characteristics. We discovered that the majority of eMERGE algorithms analyzed include complex, nested boolean logic and negation, with several dependent on cardinality constraints and complex temporal logic. Insights gained from the study will be used to augment the CDISC Protocol Representation Model.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>22195079</pmid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2011, Vol.2011, p.274-283
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243189
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Diagnosis, Differential
Electronic Health Records
Hashimoto Disease - diagnosis
Humans
Hypothyroidism - diagnosis
Phenotype
title Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20heterogeneity%20and%20complexity%20of%20Electronic%20Health%20Record%20oriented%20phenotyping%20algorithms&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Conway,%20Mike&rft.date=2011&rft.volume=2011&rft.spage=274&rft.epage=283&rft.pages=274-283&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E912641053%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912641053&rft_id=info:pmid/22195079&rfr_iscdi=true