How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica
Five functional silanes3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPTES), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and N-(6-aminohexyl)aminomethyltriethoxysilane (AHAMTES)were assessed for the prepa...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-01, Vol.28 (1), p.416-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Five functional silanes3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AEAPTES), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), and N-(6-aminohexyl)aminomethyltriethoxysilane (AHAMTES)were assessed for the preparation of hydrolytically stable amine-functionalized silica substrates. These can be categorized into three groups (G1, G2, and G3) based on the intramolecular coordinating ability of the amine functionality to the silicon center. Silanizations were carried out in anhydrous toluene as well as in the vapor phase at elevated temperatures. Aminosilane-derived layers prepared in solution are multilayers in nature, and those produced in the vapor phase have monolayer characteristics. In general, vapor-phase reactions are much less sensitive to variations in humidity and reagent purity, are more practical than the solution-phase method, and generate more reproducible results. Intramolecular catalysis by the amine functionality is found to be important for both silanization and hydrolysis. The primary amine group in the G1 silanes (APTES and APTMS) can readily catalyze siloxane bond formation and hydrolysis to render their silane layers unstable toward hydrolysis. The amine functionality in the G3 silane (AHAMTES) is incapable of intramolecular catalysis of silanization so that stable siloxane bonds between the silane molecules and surface silanols do not form easily. The secondary amine group in the G2 silanes (AEAPTES and AEAPTMS), on the other hand, can catalyze siloxane bond formation, but the intramolecular catalysis of bond detachment is sterically hindered. The G2 silanes are the best candidates for preparing stable amine-functionalized surfaces. Between the two G2 aminosilanes, AEAPTES results in more reproducible silane layers than AEAPTMS in the vapor phase due to its lower sensitivity to water content in the reaction systems. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la203638g |