Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway

Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2012-01, Vol.93 (1), p.141-151
Hauptverfasser: Chen, Wen, Gaßner, Birgit, Börner, Sebastian, Nikolaev, Viacheslav O., Schlegel, Nicolas, Waschke, Jens, Steinbronn, Nadine, Strasser, Ruth, Kuhn, Michaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1
container_start_page 141
container_title Cardiovascular research
container_volume 93
creator Chen, Wen
Gaßner, Birgit
Börner, Sebastian
Nikolaev, Viacheslav O.
Schlegel, Nicolas
Waschke, Jens
Steinbronn, Nadine
Strasser, Ruth
Kuhn, Michaela
description Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. Methods and results Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1−/− mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. Conclusion ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.
doi_str_mv 10.1093/cvr/cvr279
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvr279</oup_id><sourcerecordid>918936219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-466437ce1887dac8de76c5aaa6b9f9b31234eb5c5122462b2034a5de1ba08fd83</originalsourceid><addsrcrecordid>eNp9kUlrHDEQhUVIiCd2Lv4BQZdgMLSjpdXLxWCMnQQMucRnUVJXexTUiyX1hPn3kT0TLxcfRCHqU9XTe4Qcc3bGWSu_2U14OKJu35EVr5UqpCjVe7JijDVFJSt5QD7F-CdflarLj-RACCaUaviKLBcpOPB0hFyXgMlZOuOcXIcUxzWMFiMdnA3TBqJdPAQK3iyDGzMWBgTjvEtbarY0rZFa2ODkAYsBOwcJO5oCjNGi949vZ0jrv7A9Ih968BE_7-shub2--n35o7j59f3n5cVNYUtZp6Ksqlwt8qapO7BNh3VlFQBUpu1bI7mQJRplFReirIQRTJagOuQGWNN3jTwk57u582KyIotjluP1HNwAYasncPp1Z3RrfTdtdDZQspLnASf7AWG6XzAmPbjH38CI0xJ1y5tWVoK3mTzdkdmqGAP2T1s40w8x6RyR3sWU4S8vdT2h_3PJwNc9kF0H32cTrYvPXM5R1LV45qZlfmvhPwSerU4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918936219</pqid></control><display><type>article</type><title>Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Chen, Wen ; Gaßner, Birgit ; Börner, Sebastian ; Nikolaev, Viacheslav O. ; Schlegel, Nicolas ; Waschke, Jens ; Steinbronn, Nadine ; Strasser, Ruth ; Kuhn, Michaela</creator><creatorcontrib>Chen, Wen ; Gaßner, Birgit ; Börner, Sebastian ; Nikolaev, Viacheslav O. ; Schlegel, Nicolas ; Waschke, Jens ; Steinbronn, Nadine ; Strasser, Ruth ; Kuhn, Michaela</creatorcontrib><description>Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. Methods and results Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1−/− mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. Conclusion ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvr279</identifier><identifier>PMID: 22025581</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Albumins - metabolism ; Animals ; Atrial Natriuretic Factor - pharmacology ; Atrial Natriuretic Factor - physiology ; Biological and medical sciences ; Capillary Permeability - drug effects ; Capillary Permeability - physiology ; Cardiology. Vascular system ; Caveolae - drug effects ; Caveolae - physiology ; Caveolin 1 - deficiency ; Caveolin 1 - genetics ; Caveolin 1 - physiology ; Cells, Cultured ; Endocytosis - drug effects ; Endothelial Cells - drug effects ; Endothelial Cells - physiology ; Male ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Original ; Rats ; Receptors, Atrial Natriuretic Factor - deficiency ; Receptors, Atrial Natriuretic Factor - genetics ; Receptors, Atrial Natriuretic Factor - physiology ; Transcytosis - drug effects</subject><ispartof>Cardiovascular research, 2012-01, Vol.93 (1), p.141-151</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2011. For permissions please email: journals.permissions@oup.com. 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-466437ce1887dac8de76c5aaa6b9f9b31234eb5c5122462b2034a5de1ba08fd83</citedby><cites>FETCH-LOGICAL-c437t-466437ce1887dac8de76c5aaa6b9f9b31234eb5c5122462b2034a5de1ba08fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,1581,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25572772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22025581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Gaßner, Birgit</creatorcontrib><creatorcontrib>Börner, Sebastian</creatorcontrib><creatorcontrib>Nikolaev, Viacheslav O.</creatorcontrib><creatorcontrib>Schlegel, Nicolas</creatorcontrib><creatorcontrib>Waschke, Jens</creatorcontrib><creatorcontrib>Steinbronn, Nadine</creatorcontrib><creatorcontrib>Strasser, Ruth</creatorcontrib><creatorcontrib>Kuhn, Michaela</creatorcontrib><title>Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. Methods and results Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1−/− mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. Conclusion ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.</description><subject>Albumins - metabolism</subject><subject>Animals</subject><subject>Atrial Natriuretic Factor - pharmacology</subject><subject>Atrial Natriuretic Factor - physiology</subject><subject>Biological and medical sciences</subject><subject>Capillary Permeability - drug effects</subject><subject>Capillary Permeability - physiology</subject><subject>Cardiology. Vascular system</subject><subject>Caveolae - drug effects</subject><subject>Caveolae - physiology</subject><subject>Caveolin 1 - deficiency</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - physiology</subject><subject>Cells, Cultured</subject><subject>Endocytosis - drug effects</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - physiology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Original</subject><subject>Rats</subject><subject>Receptors, Atrial Natriuretic Factor - deficiency</subject><subject>Receptors, Atrial Natriuretic Factor - genetics</subject><subject>Receptors, Atrial Natriuretic Factor - physiology</subject><subject>Transcytosis - drug effects</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlrHDEQhUVIiCd2Lv4BQZdgMLSjpdXLxWCMnQQMucRnUVJXexTUiyX1hPn3kT0TLxcfRCHqU9XTe4Qcc3bGWSu_2U14OKJu35EVr5UqpCjVe7JijDVFJSt5QD7F-CdflarLj-RACCaUaviKLBcpOPB0hFyXgMlZOuOcXIcUxzWMFiMdnA3TBqJdPAQK3iyDGzMWBgTjvEtbarY0rZFa2ODkAYsBOwcJO5oCjNGi949vZ0jrv7A9Ih968BE_7-shub2--n35o7j59f3n5cVNYUtZp6Ksqlwt8qapO7BNh3VlFQBUpu1bI7mQJRplFReirIQRTJagOuQGWNN3jTwk57u582KyIotjluP1HNwAYasncPp1Z3RrfTdtdDZQspLnASf7AWG6XzAmPbjH38CI0xJ1y5tWVoK3mTzdkdmqGAP2T1s40w8x6RyR3sWU4S8vdT2h_3PJwNc9kF0H32cTrYvPXM5R1LV45qZlfmvhPwSerU4</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chen, Wen</creator><creator>Gaßner, Birgit</creator><creator>Börner, Sebastian</creator><creator>Nikolaev, Viacheslav O.</creator><creator>Schlegel, Nicolas</creator><creator>Waschke, Jens</creator><creator>Steinbronn, Nadine</creator><creator>Strasser, Ruth</creator><creator>Kuhn, Michaela</creator><general>Oxford University Press</general><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway</title><author>Chen, Wen ; Gaßner, Birgit ; Börner, Sebastian ; Nikolaev, Viacheslav O. ; Schlegel, Nicolas ; Waschke, Jens ; Steinbronn, Nadine ; Strasser, Ruth ; Kuhn, Michaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-466437ce1887dac8de76c5aaa6b9f9b31234eb5c5122462b2034a5de1ba08fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Albumins - metabolism</topic><topic>Animals</topic><topic>Atrial Natriuretic Factor - pharmacology</topic><topic>Atrial Natriuretic Factor - physiology</topic><topic>Biological and medical sciences</topic><topic>Capillary Permeability - drug effects</topic><topic>Capillary Permeability - physiology</topic><topic>Cardiology. Vascular system</topic><topic>Caveolae - drug effects</topic><topic>Caveolae - physiology</topic><topic>Caveolin 1 - deficiency</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - physiology</topic><topic>Cells, Cultured</topic><topic>Endocytosis - drug effects</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - physiology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Original</topic><topic>Rats</topic><topic>Receptors, Atrial Natriuretic Factor - deficiency</topic><topic>Receptors, Atrial Natriuretic Factor - genetics</topic><topic>Receptors, Atrial Natriuretic Factor - physiology</topic><topic>Transcytosis - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Gaßner, Birgit</creatorcontrib><creatorcontrib>Börner, Sebastian</creatorcontrib><creatorcontrib>Nikolaev, Viacheslav O.</creatorcontrib><creatorcontrib>Schlegel, Nicolas</creatorcontrib><creatorcontrib>Waschke, Jens</creatorcontrib><creatorcontrib>Steinbronn, Nadine</creatorcontrib><creatorcontrib>Strasser, Ruth</creatorcontrib><creatorcontrib>Kuhn, Michaela</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wen</au><au>Gaßner, Birgit</au><au>Börner, Sebastian</au><au>Nikolaev, Viacheslav O.</au><au>Schlegel, Nicolas</au><au>Waschke, Jens</au><au>Steinbronn, Nadine</au><au>Strasser, Ruth</au><au>Kuhn, Michaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>93</volume><issue>1</issue><spage>141</spage><epage>151</epage><pages>141-151</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims Cardiac atrial natriuretic peptide (ANP) participates in the maintenance of arterial blood pressure and intravascular volume homeostasis. The hypovolaemic effects of ANP result from coordinated actions in the kidney and systemic microcirculation. Hence, ANP, via its guanylyl cyclase-A (GC-A) receptor and intracellular cyclic GMP as second messenger, stimulates endothelial albumin permeability. Ultimately, this leads to a shift of plasma fluid into interstitial pools. Here we studied the role of caveolae-mediated transendothelial albumin transport in the hyperpermeability effects of ANP. Methods and results Intravital microscopy studies of the mouse cremaster microcirculation showed that ANP stimulates the extravasation of fluorescent albumin from post-capillary venules and causes arteriolar vasodilatation. The hyperpermeability effect was prevented in mice with conditional, endothelial deletion of GC-A (EC GC-A KO) or with deleted caveolin-1 (cav-1), the caveolae scaffold protein. In contrast, the vasodilating effect was preserved. Concomitantly, the acute hypovolaemic action of ANP was abolished in EC GC-A KO and Cav-1−/− mice. In cultured microvascular rat fat pad and mouse lung endothelial cells, ANP stimulated uptake and transendothelial transport of fluorescent albumin without altering endothelial electrical resistance. The stimulatory effect on albumin uptake was prevented in GC-A- or cav-1-deficient pulmonary endothelia. Finally, preparation of caveolin-enriched lipid rafts from mouse lung and western blotting showed that GC-A and cGMP-dependent protein kinase I partly co-localize with Cav-1 in caveolae microdomains. Conclusion ANP enhances transendothelial caveolae-mediated albumin transport via its GC-A receptor. This ANP-mediated cross-talk between the heart and the microcirculation is critically involved in the regulation of intravascular volume.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>22025581</pmid><doi>10.1093/cvr/cvr279</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2012-01, Vol.93 (1), p.141-151
issn 0008-6363
1755-3245
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3243041
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Albumins - metabolism
Animals
Atrial Natriuretic Factor - pharmacology
Atrial Natriuretic Factor - physiology
Biological and medical sciences
Capillary Permeability - drug effects
Capillary Permeability - physiology
Cardiology. Vascular system
Caveolae - drug effects
Caveolae - physiology
Caveolin 1 - deficiency
Caveolin 1 - genetics
Caveolin 1 - physiology
Cells, Cultured
Endocytosis - drug effects
Endothelial Cells - drug effects
Endothelial Cells - physiology
Male
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Original
Rats
Receptors, Atrial Natriuretic Factor - deficiency
Receptors, Atrial Natriuretic Factor - genetics
Receptors, Atrial Natriuretic Factor - physiology
Transcytosis - drug effects
title Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atrial%20natriuretic%20peptide%20enhances%20microvascular%20albumin%20permeability%20by%20the%20caveolae-mediated%20transcellular%20pathway&rft.jtitle=Cardiovascular%20research&rft.au=Chen,%20Wen&rft.date=2012-01-01&rft.volume=93&rft.issue=1&rft.spage=141&rft.epage=151&rft.pages=141-151&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvr279&rft_dat=%3Cproquest_pubme%3E918936219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918936219&rft_id=info:pmid/22025581&rft_oup_id=10.1093/cvr/cvr279&rfr_iscdi=true