Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex

Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2011-12, Vol.21 (6), p.1156-1170
Hauptverfasser: Jin, Yui, Sultana, Azmiri, Gandhi, Pallavi, Franklin, Edward, Hamamoto, Susan, Khan, Amir R., Munson, Mary, Schekman, Randy, Weisman, Lois S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1170
container_issue 6
container_start_page 1156
container_title Developmental cell
container_volume 21
creator Jin, Yui
Sultana, Azmiri
Gandhi, Pallavi
Franklin, Edward
Hamamoto, Susan
Khan, Amir R.
Munson, Mary
Schekman, Randy
Weisman, Lois S.
description Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion. [Display omitted] ► Three Rab GTPases (Ypt31/32 and Sec4) associate with the same region of myosin V (Myo2) ► The exocyst subunit Sec15 interacts with a distinct portion of Myo2 ► These interactions are essential for secretory vesicle transport in budding yeast ► Mammalian myosin Va also interacts with the exocyst complex
doi_str_mv 10.1016/j.devcel.2011.10.009
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580711004564</els_id><sourcerecordid>22172676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-a2720fa5a8d16f5d1da0118389bde1ad4c1b12925c840111ebcd126c297bdbd23</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EoqXwDxDyheOmHu96Py5IKCqlUiuqEnq1Zu1Z4mizjmw3NP8eRyn9uHCa0cz7vvY8jH0EMQMB9elqZmlraJxJAZBHMyG6V-wY2qYtQCl4nXtVVoVqRXPE3sW4EtkGrXjLjqSERtZNfcyWVzsf3cRv-SLgFDc-pMh_kgmUfNjxW4rOjBT51iFHfoM9P19cYyQ-x2jQEsfJ8ospUUCTnJ_4H5eWPC2Jn917s4uJz_16M9L9e_ZmwDHSh4d6wn59O1vMvxeXP84v5l8vC1N1MhUoGykGVNhaqAdlwWI-ry3brrcEaCsDPchOKtNWeQHUGwuyNrJrettbWZ6wL4fczV2_JmtoSgFHvQlujWGnPTr9cjO5pf7tt7qUFXSyzAHVIcAEH2Og4dELQu_J65U-kNd78vtpJp9tn56_-2j6hzoLPj8I9uTGIeM2Lj7pVAmlVM3TAZQpbR0FHY2jyZB1gUzS1rv__-QvfDqlew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Yui ; Sultana, Azmiri ; Gandhi, Pallavi ; Franklin, Edward ; Hamamoto, Susan ; Khan, Amir R. ; Munson, Mary ; Schekman, Randy ; Weisman, Lois S.</creator><creatorcontrib>Jin, Yui ; Sultana, Azmiri ; Gandhi, Pallavi ; Franklin, Edward ; Hamamoto, Susan ; Khan, Amir R. ; Munson, Mary ; Schekman, Randy ; Weisman, Lois S.</creatorcontrib><description>Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion. [Display omitted] ► Three Rab GTPases (Ypt31/32 and Sec4) associate with the same region of myosin V (Myo2) ► The exocyst subunit Sec15 interacts with a distinct portion of Myo2 ► These interactions are essential for secretory vesicle transport in budding yeast ► Mammalian myosin Va also interacts with the exocyst complex</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2011.10.009</identifier><identifier>PMID: 22172676</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Binding Sites ; Biological and medical sciences ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Exocytosis ; Fundamental and applied biological sciences. Psychology ; Membrane Fusion ; Models, Molecular ; Molecular and cellular biology ; Molecular Motor Proteins - metabolism ; Mutagenesis, Site-Directed ; Myosin Heavy Chains - chemistry ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - metabolism ; Myosin Type V - chemistry ; Myosin Type V - genetics ; Myosin Type V - metabolism ; Protein Interaction Domains and Motifs ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Secretory Vesicles - metabolism ; Signal Transduction ; Vesicular Transport Proteins - chemistry ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism</subject><ispartof>Developmental cell, 2011-12, Vol.21 (6), p.1156-1170</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-a2720fa5a8d16f5d1da0118389bde1ad4c1b12925c840111ebcd126c297bdbd23</citedby><cites>FETCH-LOGICAL-c492t-a2720fa5a8d16f5d1da0118389bde1ad4c1b12925c840111ebcd126c297bdbd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580711004564$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22172676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Yui</creatorcontrib><creatorcontrib>Sultana, Azmiri</creatorcontrib><creatorcontrib>Gandhi, Pallavi</creatorcontrib><creatorcontrib>Franklin, Edward</creatorcontrib><creatorcontrib>Hamamoto, Susan</creatorcontrib><creatorcontrib>Khan, Amir R.</creatorcontrib><creatorcontrib>Munson, Mary</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><creatorcontrib>Weisman, Lois S.</creatorcontrib><title>Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion. [Display omitted] ► Three Rab GTPases (Ypt31/32 and Sec4) associate with the same region of myosin V (Myo2) ► The exocyst subunit Sec15 interacts with a distinct portion of Myo2 ► These interactions are essential for secretory vesicle transport in budding yeast ► Mammalian myosin Va also interacts with the exocyst complex</description><subject>Amino Acid Substitution</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Exocytosis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Membrane Fusion</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Myosin Heavy Chains - chemistry</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Myosin Type V - chemistry</subject><subject>Myosin Type V - genetics</subject><subject>Myosin Type V - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Secretory Vesicles - metabolism</subject><subject>Signal Transduction</subject><subject>Vesicular Transport Proteins - chemistry</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhi0EoqXwDxDyheOmHu96Py5IKCqlUiuqEnq1Zu1Z4mizjmw3NP8eRyn9uHCa0cz7vvY8jH0EMQMB9elqZmlraJxJAZBHMyG6V-wY2qYtQCl4nXtVVoVqRXPE3sW4EtkGrXjLjqSERtZNfcyWVzsf3cRv-SLgFDc-pMh_kgmUfNjxW4rOjBT51iFHfoM9P19cYyQ-x2jQEsfJ8ospUUCTnJ_4H5eWPC2Jn917s4uJz_16M9L9e_ZmwDHSh4d6wn59O1vMvxeXP84v5l8vC1N1MhUoGykGVNhaqAdlwWI-ry3brrcEaCsDPchOKtNWeQHUGwuyNrJrettbWZ6wL4fczV2_JmtoSgFHvQlujWGnPTr9cjO5pf7tt7qUFXSyzAHVIcAEH2Og4dELQu_J65U-kNd78vtpJp9tn56_-2j6hzoLPj8I9uTGIeM2Lj7pVAmlVM3TAZQpbR0FHY2jyZB1gUzS1rv__-QvfDqlew</recordid><startdate>20111213</startdate><enddate>20111213</enddate><creator>Jin, Yui</creator><creator>Sultana, Azmiri</creator><creator>Gandhi, Pallavi</creator><creator>Franklin, Edward</creator><creator>Hamamoto, Susan</creator><creator>Khan, Amir R.</creator><creator>Munson, Mary</creator><creator>Schekman, Randy</creator><creator>Weisman, Lois S.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20111213</creationdate><title>Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex</title><author>Jin, Yui ; Sultana, Azmiri ; Gandhi, Pallavi ; Franklin, Edward ; Hamamoto, Susan ; Khan, Amir R. ; Munson, Mary ; Schekman, Randy ; Weisman, Lois S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-a2720fa5a8d16f5d1da0118389bde1ad4c1b12925c840111ebcd126c297bdbd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Substitution</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Exocytosis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Membrane Fusion</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Myosin Heavy Chains - chemistry</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Myosin Type V - chemistry</topic><topic>Myosin Type V - genetics</topic><topic>Myosin Type V - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Secretory Vesicles - metabolism</topic><topic>Signal Transduction</topic><topic>Vesicular Transport Proteins - chemistry</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yui</creatorcontrib><creatorcontrib>Sultana, Azmiri</creatorcontrib><creatorcontrib>Gandhi, Pallavi</creatorcontrib><creatorcontrib>Franklin, Edward</creatorcontrib><creatorcontrib>Hamamoto, Susan</creatorcontrib><creatorcontrib>Khan, Amir R.</creatorcontrib><creatorcontrib>Munson, Mary</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><creatorcontrib>Weisman, Lois S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yui</au><au>Sultana, Azmiri</au><au>Gandhi, Pallavi</au><au>Franklin, Edward</au><au>Hamamoto, Susan</au><au>Khan, Amir R.</au><au>Munson, Mary</au><au>Schekman, Randy</au><au>Weisman, Lois S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2011-12-13</date><risdate>2011</risdate><volume>21</volume><issue>6</issue><spage>1156</spage><epage>1170</epage><pages>1156-1170</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion. [Display omitted] ► Three Rab GTPases (Ypt31/32 and Sec4) associate with the same region of myosin V (Myo2) ► The exocyst subunit Sec15 interacts with a distinct portion of Myo2 ► These interactions are essential for secretory vesicle transport in budding yeast ► Mammalian myosin Va also interacts with the exocyst complex</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>22172676</pmid><doi>10.1016/j.devcel.2011.10.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2011-12, Vol.21 (6), p.1156-1170
issn 1534-5807
1878-1551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241923
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Substitution
Binding Sites
Biological and medical sciences
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Exocytosis
Fundamental and applied biological sciences. Psychology
Membrane Fusion
Models, Molecular
Molecular and cellular biology
Molecular Motor Proteins - metabolism
Mutagenesis, Site-Directed
Myosin Heavy Chains - chemistry
Myosin Heavy Chains - genetics
Myosin Heavy Chains - metabolism
Myosin Type V - chemistry
Myosin Type V - genetics
Myosin Type V - metabolism
Protein Interaction Domains and Motifs
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Secretory Vesicles - metabolism
Signal Transduction
Vesicular Transport Proteins - chemistry
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
title Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myosin%20V%20Transports%20Secretory%20Vesicles%20via%20a%20Rab%20GTPase%20Cascade%20and%20Interaction%20with%20the%20Exocyst%20Complex&rft.jtitle=Developmental%20cell&rft.au=Jin,%20Yui&rft.date=2011-12-13&rft.volume=21&rft.issue=6&rft.spage=1156&rft.epage=1170&rft.pages=1156-1170&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2011.10.009&rft_dat=%3Cpubmed_cross%3E22172676%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22172676&rft_els_id=S1534580711004564&rfr_iscdi=true