Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy

The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-12, Vol.108 (49), p.19569-19574
Hauptverfasser: Barceló-Coblijn, Gwendolyn, Martin, Maria Laura, de Almeida, Rodrigo F. M, Noguera-Salvà, Maria Antònia, Marcilla-Etxenike, Amaia, Guardiola-Serrano, Francisca, Lüth, Anja, Kleuser, Burhard, Halver, John E, Escribá, Pablo V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19574
container_issue 49
container_start_page 19569
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Barceló-Coblijn, Gwendolyn
Martin, Maria Laura
de Almeida, Rodrigo F. M
Noguera-Salvà, Maria Antònia
Marcilla-Etxenike, Amaia
Guardiola-Serrano, Francisca
Lüth, Anja
Kleuser, Burhard
Halver, John E
Escribá, Pablo V
description The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.
doi_str_mv 10.1073/pnas.1115484108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23059535</jstor_id><sourcerecordid>23059535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-3e25eee862293a1216a4de164b1ae88353d71de254c7f0123646c2889e3f21993</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EosvCmRNgcSqHtB7bcexLJVRRQCrisPRsuYmT9SqxFzuLyJF_jtNdupQLJ8szz7x65wOhl0DOgFTsfOtNOgOAkksORD5CCyAKCsEVeYwWhNCqkJzyE_QspQ0hRJWSPEUnlAIRtIIF-rXarp3vwjDZ3nlsfIPTg0ia_Lg2yeLT1ZfVO5wj49riwfSu88aPeIzGpzbEwYwueBxa3PUuDAbXtu_TnWCuocV6amL4OYXeuhqb2jWzTjTb6Tl60po-2ReHd4lurj58u_xUXH_9-Pny_XVRC0rHgllaWmtl_ihmgIIwvLEg-C0YKyUrWVNBkyFeVy0BygQXNZVSWdZSUIot0cVed7u7HWxTW5-t93ob3WDipINx-mHGu7Xuwg_NKIdKVlng9CAQw_edTaMeXJq7NN6GXdIgBCupkor_H80LAMZFtrlEb_9BN2EXfZ6EVkRxpUogGTrfQ3UMKUXb3tsGoudD0PMh6OMh5IrXf3d7z__ZfAbwAZgrj3JSc6VBlWKe2Ks9skljiEcJRkpV5oEv0Zt9vjVBmy66pG9WlAAnBKqqJJz9BhD1zPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909499510</pqid></control><display><type>article</type><title>Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barceló-Coblijn, Gwendolyn ; Martin, Maria Laura ; de Almeida, Rodrigo F. M ; Noguera-Salvà, Maria Antònia ; Marcilla-Etxenike, Amaia ; Guardiola-Serrano, Francisca ; Lüth, Anja ; Kleuser, Burhard ; Halver, John E ; Escribá, Pablo V</creator><creatorcontrib>Barceló-Coblijn, Gwendolyn ; Martin, Maria Laura ; de Almeida, Rodrigo F. M ; Noguera-Salvà, Maria Antònia ; Marcilla-Etxenike, Amaia ; Guardiola-Serrano, Francisca ; Lüth, Anja ; Kleuser, Burhard ; Halver, John E ; Escribá, Pablo V</creatorcontrib><description>The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1115484108</identifier><identifier>PMID: 22106271</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adverse effects ; Apoptosis ; Apoptosis - drug effects ; autophagy ; Biological Sciences ; Bridged-Ring Compounds - pharmacology ; Cancer ; Cell cycle ; Cell Cycle Checkpoints - drug effects ; cell differentiation ; Cell Differentiation - drug effects ; Cell Line, Tumor ; Cell lines ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell membranes ; Cell Survival - drug effects ; Cell Transformation, Neoplastic ; Cells ; fas Receptor - metabolism ; Fatty acids ; Gene Expression Regulation, Enzymologic ; Glioma - genetics ; Glioma - metabolism ; Glioma - pathology ; Humans ; Immunoblotting ; Jurkat Cells ; Lipids ; mechanism of action ; Membrane Microdomains - drug effects ; Membrane Microdomains - metabolism ; Membrane Proteins - antagonists &amp; inhibitors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; neoplastic cell transformation ; Nerve Tissue Proteins - antagonists &amp; inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; nitric oxide synthase ; Oleic Acids - pharmacology ; phosphatidylcholines ; Phosphodiesterase Inhibitors - pharmacology ; Phospholipids ; Physical Sciences ; plasma membrane ; Proteins ; Rafts ; ras Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; sphingomyelins ; Sphingomyelins - metabolism ; T lymphocytes ; therapeutics ; Thiones - pharmacology ; Transferases (Other Substituted Phosphate Groups) - antagonists &amp; inhibitors ; Transferases (Other Substituted Phosphate Groups) - genetics ; Transferases (Other Substituted Phosphate Groups) - metabolism ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (49), p.19569-19574</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 6, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-3e25eee862293a1216a4de164b1ae88353d71de254c7f0123646c2889e3f21993</citedby><cites>FETCH-LOGICAL-c622t-3e25eee862293a1216a4de164b1ae88353d71de254c7f0123646c2889e3f21993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23059535$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23059535$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22106271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barceló-Coblijn, Gwendolyn</creatorcontrib><creatorcontrib>Martin, Maria Laura</creatorcontrib><creatorcontrib>de Almeida, Rodrigo F. M</creatorcontrib><creatorcontrib>Noguera-Salvà, Maria Antònia</creatorcontrib><creatorcontrib>Marcilla-Etxenike, Amaia</creatorcontrib><creatorcontrib>Guardiola-Serrano, Francisca</creatorcontrib><creatorcontrib>Lüth, Anja</creatorcontrib><creatorcontrib>Kleuser, Burhard</creatorcontrib><creatorcontrib>Halver, John E</creatorcontrib><creatorcontrib>Escribá, Pablo V</creatorcontrib><title>Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.</description><subject>adverse effects</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>autophagy</subject><subject>Biological Sciences</subject><subject>Bridged-Ring Compounds - pharmacology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell Survival - drug effects</subject><subject>Cell Transformation, Neoplastic</subject><subject>Cells</subject><subject>fas Receptor - metabolism</subject><subject>Fatty acids</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Glioma - genetics</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Jurkat Cells</subject><subject>Lipids</subject><subject>mechanism of action</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Proteins - antagonists &amp; inhibitors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>neoplastic cell transformation</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>nitric oxide synthase</subject><subject>Oleic Acids - pharmacology</subject><subject>phosphatidylcholines</subject><subject>Phosphodiesterase Inhibitors - pharmacology</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>plasma membrane</subject><subject>Proteins</subject><subject>Rafts</subject><subject>ras Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>sphingomyelins</subject><subject>Sphingomyelins - metabolism</subject><subject>T lymphocytes</subject><subject>therapeutics</subject><subject>Thiones - pharmacology</subject><subject>Transferases (Other Substituted Phosphate Groups) - antagonists &amp; inhibitors</subject><subject>Transferases (Other Substituted Phosphate Groups) - genetics</subject><subject>Transferases (Other Substituted Phosphate Groups) - metabolism</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EosvCmRNgcSqHtB7bcexLJVRRQCrisPRsuYmT9SqxFzuLyJF_jtNdupQLJ8szz7x65wOhl0DOgFTsfOtNOgOAkksORD5CCyAKCsEVeYwWhNCqkJzyE_QspQ0hRJWSPEUnlAIRtIIF-rXarp3vwjDZ3nlsfIPTg0ia_Lg2yeLT1ZfVO5wj49riwfSu88aPeIzGpzbEwYwueBxa3PUuDAbXtu_TnWCuocV6amL4OYXeuhqb2jWzTjTb6Tl60po-2ReHd4lurj58u_xUXH_9-Pny_XVRC0rHgllaWmtl_ihmgIIwvLEg-C0YKyUrWVNBkyFeVy0BygQXNZVSWdZSUIot0cVed7u7HWxTW5-t93ob3WDipINx-mHGu7Xuwg_NKIdKVlng9CAQw_edTaMeXJq7NN6GXdIgBCupkor_H80LAMZFtrlEb_9BN2EXfZ6EVkRxpUogGTrfQ3UMKUXb3tsGoudD0PMh6OMh5IrXf3d7z__ZfAbwAZgrj3JSc6VBlWKe2Ks9skljiEcJRkpV5oEv0Zt9vjVBmy66pG9WlAAnBKqqJJz9BhD1zPk</recordid><startdate>20111206</startdate><enddate>20111206</enddate><creator>Barceló-Coblijn, Gwendolyn</creator><creator>Martin, Maria Laura</creator><creator>de Almeida, Rodrigo F. M</creator><creator>Noguera-Salvà, Maria Antònia</creator><creator>Marcilla-Etxenike, Amaia</creator><creator>Guardiola-Serrano, Francisca</creator><creator>Lüth, Anja</creator><creator>Kleuser, Burhard</creator><creator>Halver, John E</creator><creator>Escribá, Pablo V</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20111206</creationdate><title>Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy</title><author>Barceló-Coblijn, Gwendolyn ; Martin, Maria Laura ; de Almeida, Rodrigo F. M ; Noguera-Salvà, Maria Antònia ; Marcilla-Etxenike, Amaia ; Guardiola-Serrano, Francisca ; Lüth, Anja ; Kleuser, Burhard ; Halver, John E ; Escribá, Pablo V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-3e25eee862293a1216a4de164b1ae88353d71de254c7f0123646c2889e3f21993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adverse effects</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>autophagy</topic><topic>Biological Sciences</topic><topic>Bridged-Ring Compounds - pharmacology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell Survival - drug effects</topic><topic>Cell Transformation, Neoplastic</topic><topic>Cells</topic><topic>fas Receptor - metabolism</topic><topic>Fatty acids</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Glioma - genetics</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Jurkat Cells</topic><topic>Lipids</topic><topic>mechanism of action</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Proteins - antagonists &amp; inhibitors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>neoplastic cell transformation</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>nitric oxide synthase</topic><topic>Oleic Acids - pharmacology</topic><topic>phosphatidylcholines</topic><topic>Phosphodiesterase Inhibitors - pharmacology</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>plasma membrane</topic><topic>Proteins</topic><topic>Rafts</topic><topic>ras Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>sphingomyelins</topic><topic>Sphingomyelins - metabolism</topic><topic>T lymphocytes</topic><topic>therapeutics</topic><topic>Thiones - pharmacology</topic><topic>Transferases (Other Substituted Phosphate Groups) - antagonists &amp; inhibitors</topic><topic>Transferases (Other Substituted Phosphate Groups) - genetics</topic><topic>Transferases (Other Substituted Phosphate Groups) - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barceló-Coblijn, Gwendolyn</creatorcontrib><creatorcontrib>Martin, Maria Laura</creatorcontrib><creatorcontrib>de Almeida, Rodrigo F. M</creatorcontrib><creatorcontrib>Noguera-Salvà, Maria Antònia</creatorcontrib><creatorcontrib>Marcilla-Etxenike, Amaia</creatorcontrib><creatorcontrib>Guardiola-Serrano, Francisca</creatorcontrib><creatorcontrib>Lüth, Anja</creatorcontrib><creatorcontrib>Kleuser, Burhard</creatorcontrib><creatorcontrib>Halver, John E</creatorcontrib><creatorcontrib>Escribá, Pablo V</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barceló-Coblijn, Gwendolyn</au><au>Martin, Maria Laura</au><au>de Almeida, Rodrigo F. M</au><au>Noguera-Salvà, Maria Antònia</au><au>Marcilla-Etxenike, Amaia</au><au>Guardiola-Serrano, Francisca</au><au>Lüth, Anja</au><au>Kleuser, Burhard</au><au>Halver, John E</au><au>Escribá, Pablo V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-12-06</date><risdate>2011</risdate><volume>108</volume><issue>49</issue><spage>19569</spage><epage>19574</epage><pages>19569-19574</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22106271</pmid><doi>10.1073/pnas.1115484108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (49), p.19569-19574
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241787
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adverse effects
Apoptosis
Apoptosis - drug effects
autophagy
Biological Sciences
Bridged-Ring Compounds - pharmacology
Cancer
Cell cycle
Cell Cycle Checkpoints - drug effects
cell differentiation
Cell Differentiation - drug effects
Cell Line, Tumor
Cell lines
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell membranes
Cell Survival - drug effects
Cell Transformation, Neoplastic
Cells
fas Receptor - metabolism
Fatty acids
Gene Expression Regulation, Enzymologic
Glioma - genetics
Glioma - metabolism
Glioma - pathology
Humans
Immunoblotting
Jurkat Cells
Lipids
mechanism of action
Membrane Microdomains - drug effects
Membrane Microdomains - metabolism
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
neoplastic cell transformation
Nerve Tissue Proteins - antagonists & inhibitors
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
nitric oxide synthase
Oleic Acids - pharmacology
phosphatidylcholines
Phosphodiesterase Inhibitors - pharmacology
Phospholipids
Physical Sciences
plasma membrane
Proteins
Rafts
ras Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
sphingomyelins
Sphingomyelins - metabolism
T lymphocytes
therapeutics
Thiones - pharmacology
Transferases (Other Substituted Phosphate Groups) - antagonists & inhibitors
Transferases (Other Substituted Phosphate Groups) - genetics
Transferases (Other Substituted Phosphate Groups) - metabolism
Tumors
title Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingomyelin%20and%20sphingomyelin%20synthase%20(SMS)%20in%20the%20malignant%20transformation%20of%20glioma%20cells%20and%20in%202-hydroxyoleic%20acid%20therapy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Barcel%C3%B3-Coblijn,%20Gwendolyn&rft.date=2011-12-06&rft.volume=108&rft.issue=49&rft.spage=19569&rft.epage=19574&rft.pages=19569-19574&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1115484108&rft_dat=%3Cjstor_pubme%3E23059535%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=909499510&rft_id=info:pmid/22106271&rft_jstor_id=23059535&rfr_iscdi=true