Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice
Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2011-12, Vol.189 (4), p.1515-1524 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1524 |
---|---|
container_issue | 4 |
container_start_page | 1515 |
container_title | Genetics (Austin) |
container_volume | 189 |
creator | Gu, Xing-You Foley, Michael E Horvath, David P Anderson, James V Feng, Jiuhuan Zhang, Lihua Mowry, Chase R Ye, Heng Suttle, Jeffrey C Kadowaki, Koh-ichi Chen, Zongxiang |
description | Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic helix-loop-helix family transcription factor by intragenic recombinants and provided unambiguous evidence that the association arises from pleiotropy. The pleiotropic gene expressed in early developing seeds promoted expression of key genes for biosynthesis of abscisic acid (ABA), resulting in an increase in accumulation of the dormancy-inducing hormone; activated a conserved network of eight genes for flavonoid biosynthesis to produce the pigments in the lower epidermal cells of the pericarp tissue; and enhanced seed weight. Thus, the pleiotropic locus most likely controls the dormancy and pigment traits by regulating ABA and flavonoid biosynthetic pathways, respectively. The dormancy effect could be eliminated by a heat treatment, but could not be completely overcome by gibberellic acid or physical removal of the seed maternal tissues. The dormancy-enhancing alleles differentiated into two groups basically associated with tropical and temperate ecotypes of weedy rice. Of the pleiotropic effects, seed dormancy could contribute most to the weed adaptation. Pleiotropy prevents the use of the dormancy gene to improve resistance of white pericarp cultivars against pre-harvest sprouting through conventional breeding approaches. |
doi_str_mv | 10.1534/genetics.111.131169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569932721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-949b176b496f6e34946e35aa3b24289bbf6dcd74b887c5265ec9d2e4f1eab6a83</originalsourceid><addsrcrecordid>eNpdkU2PFCEQhonRuOvoLzAxxIunGZuGppuLyWbjV7KJFz0TPqpn2DDQArNmfo1_1Vpnd7N6gYJ66qWKl5DXrNuwgYv3W0jQgqsbxtiGccakekLOmRJ83UvOnj6Kz8iLWq-7rpNqmJ6Ts56pQTApzsnvi1qzC6aFnKiF9gsg0Qrgqc9lb5I7UpM8XaAEZ8pCXY650FAxSK3kGJG0yNAlQsh4swRHbzujbWcaLbA9RNOgUmOrCxWTxgX_V3OO5ianjKd6TG0HFVVDotiBP2Khp_gkvCTPZhMrvLrbV-THp4_fL7-sr759_np5cbV2grO2VkJZNkorlJwlcKEEroMx3Pain5S1s_TOj8JO0-iGXg7glO9BzAyMlWbiK_LhpLsc7B68A5zORL2UsDflqLMJ-t9MCju9zTea94IJ9GNF3t0JlPzzALXpfagOYjQJ8qFqxfDPOz5xJN_-R17nQ0k4HUKj7EcpeoT4CXIl11pgfmiFdfrWfn1vv0b79cl-rHrzeIqHmnu_-R__d7KF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917627642</pqid></control><display><type>article</type><title>Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gu, Xing-You ; Foley, Michael E ; Horvath, David P ; Anderson, James V ; Feng, Jiuhuan ; Zhang, Lihua ; Mowry, Chase R ; Ye, Heng ; Suttle, Jeffrey C ; Kadowaki, Koh-ichi ; Chen, Zongxiang</creator><creatorcontrib>Gu, Xing-You ; Foley, Michael E ; Horvath, David P ; Anderson, James V ; Feng, Jiuhuan ; Zhang, Lihua ; Mowry, Chase R ; Ye, Heng ; Suttle, Jeffrey C ; Kadowaki, Koh-ichi ; Chen, Zongxiang</creatorcontrib><description>Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic helix-loop-helix family transcription factor by intragenic recombinants and provided unambiguous evidence that the association arises from pleiotropy. The pleiotropic gene expressed in early developing seeds promoted expression of key genes for biosynthesis of abscisic acid (ABA), resulting in an increase in accumulation of the dormancy-inducing hormone; activated a conserved network of eight genes for flavonoid biosynthesis to produce the pigments in the lower epidermal cells of the pericarp tissue; and enhanced seed weight. Thus, the pleiotropic locus most likely controls the dormancy and pigment traits by regulating ABA and flavonoid biosynthetic pathways, respectively. The dormancy effect could be eliminated by a heat treatment, but could not be completely overcome by gibberellic acid or physical removal of the seed maternal tissues. The dormancy-enhancing alleles differentiated into two groups basically associated with tropical and temperate ecotypes of weedy rice. Of the pleiotropic effects, seed dormancy could contribute most to the weed adaptation. Pleiotropy prevents the use of the dormancy gene to improve resistance of white pericarp cultivars against pre-harvest sprouting through conventional breeding approaches.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.111.131169</identifier><identifier>PMID: 21954164</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Abscisic Acid - biosynthesis ; Amino Acid Sequence ; Biosynthesis ; Color ; Flavonoids - biosynthesis ; Genes, Plant ; Genetics ; Grain ; Investigations ; Molecular Sequence Data ; Oryza - classification ; Oryza - genetics ; Oryza - metabolism ; Oryza - physiology ; Phylogeny ; Pigments ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; Rice ; Seeds ; Seeds - physiology ; Sequence Homology, Amino Acid</subject><ispartof>Genetics (Austin), 2011-12, Vol.189 (4), p.1515-1524</ispartof><rights>Copyright Genetics Society of America Dec 2011</rights><rights>Copyright © 2011 by the Genetics Society of America 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-949b176b496f6e34946e35aa3b24289bbf6dcd74b887c5265ec9d2e4f1eab6a83</citedby><cites>FETCH-LOGICAL-c431t-949b176b496f6e34946e35aa3b24289bbf6dcd74b887c5265ec9d2e4f1eab6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21954164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Xing-You</creatorcontrib><creatorcontrib>Foley, Michael E</creatorcontrib><creatorcontrib>Horvath, David P</creatorcontrib><creatorcontrib>Anderson, James V</creatorcontrib><creatorcontrib>Feng, Jiuhuan</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Mowry, Chase R</creatorcontrib><creatorcontrib>Ye, Heng</creatorcontrib><creatorcontrib>Suttle, Jeffrey C</creatorcontrib><creatorcontrib>Kadowaki, Koh-ichi</creatorcontrib><creatorcontrib>Chen, Zongxiang</creatorcontrib><title>Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic helix-loop-helix family transcription factor by intragenic recombinants and provided unambiguous evidence that the association arises from pleiotropy. The pleiotropic gene expressed in early developing seeds promoted expression of key genes for biosynthesis of abscisic acid (ABA), resulting in an increase in accumulation of the dormancy-inducing hormone; activated a conserved network of eight genes for flavonoid biosynthesis to produce the pigments in the lower epidermal cells of the pericarp tissue; and enhanced seed weight. Thus, the pleiotropic locus most likely controls the dormancy and pigment traits by regulating ABA and flavonoid biosynthetic pathways, respectively. The dormancy effect could be eliminated by a heat treatment, but could not be completely overcome by gibberellic acid or physical removal of the seed maternal tissues. The dormancy-enhancing alleles differentiated into two groups basically associated with tropical and temperate ecotypes of weedy rice. Of the pleiotropic effects, seed dormancy could contribute most to the weed adaptation. Pleiotropy prevents the use of the dormancy gene to improve resistance of white pericarp cultivars against pre-harvest sprouting through conventional breeding approaches.</description><subject>Abscisic Acid - biosynthesis</subject><subject>Amino Acid Sequence</subject><subject>Biosynthesis</subject><subject>Color</subject><subject>Flavonoids - biosynthesis</subject><subject>Genes, Plant</subject><subject>Genetics</subject><subject>Grain</subject><subject>Investigations</subject><subject>Molecular Sequence Data</subject><subject>Oryza - classification</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza - physiology</subject><subject>Phylogeny</subject><subject>Pigments</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rice</subject><subject>Seeds</subject><subject>Seeds - physiology</subject><subject>Sequence Homology, Amino Acid</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU2PFCEQhonRuOvoLzAxxIunGZuGppuLyWbjV7KJFz0TPqpn2DDQArNmfo1_1Vpnd7N6gYJ66qWKl5DXrNuwgYv3W0jQgqsbxtiGccakekLOmRJ83UvOnj6Kz8iLWq-7rpNqmJ6Ts56pQTApzsnvi1qzC6aFnKiF9gsg0Qrgqc9lb5I7UpM8XaAEZ8pCXY650FAxSK3kGJG0yNAlQsh4swRHbzujbWcaLbA9RNOgUmOrCxWTxgX_V3OO5ianjKd6TG0HFVVDotiBP2Khp_gkvCTPZhMrvLrbV-THp4_fL7-sr759_np5cbV2grO2VkJZNkorlJwlcKEEroMx3Pain5S1s_TOj8JO0-iGXg7glO9BzAyMlWbiK_LhpLsc7B68A5zORL2UsDflqLMJ-t9MCju9zTea94IJ9GNF3t0JlPzzALXpfagOYjQJ8qFqxfDPOz5xJN_-R17nQ0k4HUKj7EcpeoT4CXIl11pgfmiFdfrWfn1vv0b79cl-rHrzeIqHmnu_-R__d7KF</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Gu, Xing-You</creator><creator>Foley, Michael E</creator><creator>Horvath, David P</creator><creator>Anderson, James V</creator><creator>Feng, Jiuhuan</creator><creator>Zhang, Lihua</creator><creator>Mowry, Chase R</creator><creator>Ye, Heng</creator><creator>Suttle, Jeffrey C</creator><creator>Kadowaki, Koh-ichi</creator><creator>Chen, Zongxiang</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201112</creationdate><title>Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice</title><author>Gu, Xing-You ; Foley, Michael E ; Horvath, David P ; Anderson, James V ; Feng, Jiuhuan ; Zhang, Lihua ; Mowry, Chase R ; Ye, Heng ; Suttle, Jeffrey C ; Kadowaki, Koh-ichi ; Chen, Zongxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-949b176b496f6e34946e35aa3b24289bbf6dcd74b887c5265ec9d2e4f1eab6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abscisic Acid - biosynthesis</topic><topic>Amino Acid Sequence</topic><topic>Biosynthesis</topic><topic>Color</topic><topic>Flavonoids - biosynthesis</topic><topic>Genes, Plant</topic><topic>Genetics</topic><topic>Grain</topic><topic>Investigations</topic><topic>Molecular Sequence Data</topic><topic>Oryza - classification</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza - physiology</topic><topic>Phylogeny</topic><topic>Pigments</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rice</topic><topic>Seeds</topic><topic>Seeds - physiology</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xing-You</creatorcontrib><creatorcontrib>Foley, Michael E</creatorcontrib><creatorcontrib>Horvath, David P</creatorcontrib><creatorcontrib>Anderson, James V</creatorcontrib><creatorcontrib>Feng, Jiuhuan</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Mowry, Chase R</creatorcontrib><creatorcontrib>Ye, Heng</creatorcontrib><creatorcontrib>Suttle, Jeffrey C</creatorcontrib><creatorcontrib>Kadowaki, Koh-ichi</creatorcontrib><creatorcontrib>Chen, Zongxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xing-You</au><au>Foley, Michael E</au><au>Horvath, David P</au><au>Anderson, James V</au><au>Feng, Jiuhuan</au><au>Zhang, Lihua</au><au>Mowry, Chase R</au><au>Ye, Heng</au><au>Suttle, Jeffrey C</au><au>Kadowaki, Koh-ichi</au><au>Chen, Zongxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2011-12</date><risdate>2011</risdate><volume>189</volume><issue>4</issue><spage>1515</spage><epage>1524</epage><pages>1515-1524</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic helix-loop-helix family transcription factor by intragenic recombinants and provided unambiguous evidence that the association arises from pleiotropy. The pleiotropic gene expressed in early developing seeds promoted expression of key genes for biosynthesis of abscisic acid (ABA), resulting in an increase in accumulation of the dormancy-inducing hormone; activated a conserved network of eight genes for flavonoid biosynthesis to produce the pigments in the lower epidermal cells of the pericarp tissue; and enhanced seed weight. Thus, the pleiotropic locus most likely controls the dormancy and pigment traits by regulating ABA and flavonoid biosynthetic pathways, respectively. The dormancy effect could be eliminated by a heat treatment, but could not be completely overcome by gibberellic acid or physical removal of the seed maternal tissues. The dormancy-enhancing alleles differentiated into two groups basically associated with tropical and temperate ecotypes of weedy rice. Of the pleiotropic effects, seed dormancy could contribute most to the weed adaptation. Pleiotropy prevents the use of the dormancy gene to improve resistance of white pericarp cultivars against pre-harvest sprouting through conventional breeding approaches.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>21954164</pmid><doi>10.1534/genetics.111.131169</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2011-12, Vol.189 (4), p.1515-1524 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3241415 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Abscisic Acid - biosynthesis Amino Acid Sequence Biosynthesis Color Flavonoids - biosynthesis Genes, Plant Genetics Grain Investigations Molecular Sequence Data Oryza - classification Oryza - genetics Oryza - metabolism Oryza - physiology Phylogeny Pigments Plant Proteins - chemistry Plant Proteins - genetics Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction Rice Seeds Seeds - physiology Sequence Homology, Amino Acid |
title | Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20between%20seed%20dormancy%20and%20pericarp%20color%20is%20controlled%20by%20a%20pleiotropic%20gene%20that%20regulates%20abscisic%20acid%20and%20flavonoid%20synthesis%20in%20weedy%20red%20rice&rft.jtitle=Genetics%20(Austin)&rft.au=Gu,%20Xing-You&rft.date=2011-12&rft.volume=189&rft.issue=4&rft.spage=1515&rft.epage=1524&rft.pages=1515-1524&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.111.131169&rft_dat=%3Cproquest_pubme%3E2569932721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917627642&rft_id=info:pmid/21954164&rfr_iscdi=true |