Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores

Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web‐based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2012-01, Vol.33 (3), p.331-339
Hauptverfasser: Lee, Kyu Il, Jo, Sunhwan, Rui, Huan, Egwolf, Bernhard, Roux, Benoît, Pastor, Richard W., Im, Wonpil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 331
container_title Journal of computational chemistry
container_volume 33
creator Lee, Kyu Il
Jo, Sunhwan
Rui, Huan
Egwolf, Bernhard
Roux, Benoît
Pastor, Richard W.
Im, Wonpil
description Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web‐based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm‐gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α‐Hemolysin (α‐HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all‐atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α‐HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5–7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012
doi_str_mv 10.1002/jcc.21952
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3240732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556917001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5452-613d92beaf699fa9f55e3ffc452f203a1b33e4dcb83316d7f47deced17a3acbc3</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EomnhwB9AFjcO2_pjvY4vSCiCFogKSEXlZnm9Y3DY2Fvboc2_x23aCA6c5jDPPPNKL0IvKDmmhLCTlbXHjCrBHqEZJapr1Fx-f4xmhCrWzDtBD9BhzitCCBdd-xQdMEYJo7KbIX8JPfahQHLGAnYx4T7F6-BNwMM2mLW3GWe_3oym-BhwdPh2lGRCnmIq2IQB-5KxmabR2zso4xJxD8U0vUkJRlxByM_QE2fGDM_v5xH69v7dxeKsWX4-_bB4u2ysaAVrOsoHxXowrlPKGeWEAO6crTvHCDe05xzawfZzzmk3SNfKASwMVBpubG_5EXqz806bfg2DhVDDjnpKfm3SVkfj9b-b4H_qH_G35qwlkrMqeHUvSPFqA7noVdykUDNrRVvFWzFXFXq9g2yKOSdw-weU6NtSdC1F35VS2Zd_J9qTDy1U4GQHXPsRtv836Y-LxYOy2V34XOBmf2HSL91JLoW-PD_VX-Q5vzj7-kkv-R8lz6kX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914934589</pqid></control><display><type>article</type><title>Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Lee, Kyu Il ; Jo, Sunhwan ; Rui, Huan ; Egwolf, Bernhard ; Roux, Benoît ; Pastor, Richard W. ; Im, Wonpil</creator><creatorcontrib>Lee, Kyu Il ; Jo, Sunhwan ; Rui, Huan ; Egwolf, Bernhard ; Roux, Benoît ; Pastor, Richard W. ; Im, Wonpil</creatorcontrib><description>Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web‐based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm‐gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α‐Hemolysin (α‐HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all‐atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α‐HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5–7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.21952</identifier><identifier>PMID: 22102176</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical chemistry ; anthrax toxin protective antigen pore ; Antigens ; Antigens, Bacterial - chemistry ; Antigens, Bacterial - immunology ; Bacterial Toxins - immunology ; Brownian motion ; channel conductance ; grand canonical Monte Carlo/Brownian dynamics ; Hemolysin Proteins - chemistry ; Internet ; ion selectivity ; Ion Transport ; Ions ; Sediment transport ; Simulation ; User-Computer Interface ; voltage dependent anion channel ; α-hemolysin</subject><ispartof>Journal of computational chemistry, 2012-01, Vol.33 (3), p.331-339</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jan 30, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5452-613d92beaf699fa9f55e3ffc452f203a1b33e4dcb83316d7f47deced17a3acbc3</citedby><cites>FETCH-LOGICAL-c5452-613d92beaf699fa9f55e3ffc452f203a1b33e4dcb83316d7f47deced17a3acbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.21952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.21952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22102176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kyu Il</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Egwolf, Bernhard</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><creatorcontrib>Pastor, Richard W.</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><title>Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web‐based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm‐gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α‐Hemolysin (α‐HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all‐atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α‐HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5–7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012</description><subject>Analytical chemistry</subject><subject>anthrax toxin protective antigen pore</subject><subject>Antigens</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Antigens, Bacterial - immunology</subject><subject>Bacterial Toxins - immunology</subject><subject>Brownian motion</subject><subject>channel conductance</subject><subject>grand canonical Monte Carlo/Brownian dynamics</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Internet</subject><subject>ion selectivity</subject><subject>Ion Transport</subject><subject>Ions</subject><subject>Sediment transport</subject><subject>Simulation</subject><subject>User-Computer Interface</subject><subject>voltage dependent anion channel</subject><subject>α-hemolysin</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vEzEQhi0EomnhwB9AFjcO2_pjvY4vSCiCFogKSEXlZnm9Y3DY2Fvboc2_x23aCA6c5jDPPPNKL0IvKDmmhLCTlbXHjCrBHqEZJapr1Fx-f4xmhCrWzDtBD9BhzitCCBdd-xQdMEYJo7KbIX8JPfahQHLGAnYx4T7F6-BNwMM2mLW3GWe_3oym-BhwdPh2lGRCnmIq2IQB-5KxmabR2zso4xJxD8U0vUkJRlxByM_QE2fGDM_v5xH69v7dxeKsWX4-_bB4u2ysaAVrOsoHxXowrlPKGeWEAO6crTvHCDe05xzawfZzzmk3SNfKASwMVBpubG_5EXqz806bfg2DhVDDjnpKfm3SVkfj9b-b4H_qH_G35qwlkrMqeHUvSPFqA7noVdykUDNrRVvFWzFXFXq9g2yKOSdw-weU6NtSdC1F35VS2Zd_J9qTDy1U4GQHXPsRtv836Y-LxYOy2V34XOBmf2HSL91JLoW-PD_VX-Q5vzj7-kkv-R8lz6kX</recordid><startdate>20120130</startdate><enddate>20120130</enddate><creator>Lee, Kyu Il</creator><creator>Jo, Sunhwan</creator><creator>Rui, Huan</creator><creator>Egwolf, Bernhard</creator><creator>Roux, Benoît</creator><creator>Pastor, Richard W.</creator><creator>Im, Wonpil</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>5PM</scope></search><sort><creationdate>20120130</creationdate><title>Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores</title><author>Lee, Kyu Il ; Jo, Sunhwan ; Rui, Huan ; Egwolf, Bernhard ; Roux, Benoît ; Pastor, Richard W. ; Im, Wonpil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5452-613d92beaf699fa9f55e3ffc452f203a1b33e4dcb83316d7f47deced17a3acbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>anthrax toxin protective antigen pore</topic><topic>Antigens</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Antigens, Bacterial - immunology</topic><topic>Bacterial Toxins - immunology</topic><topic>Brownian motion</topic><topic>channel conductance</topic><topic>grand canonical Monte Carlo/Brownian dynamics</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Internet</topic><topic>ion selectivity</topic><topic>Ion Transport</topic><topic>Ions</topic><topic>Sediment transport</topic><topic>Simulation</topic><topic>User-Computer Interface</topic><topic>voltage dependent anion channel</topic><topic>α-hemolysin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyu Il</creatorcontrib><creatorcontrib>Jo, Sunhwan</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Egwolf, Bernhard</creatorcontrib><creatorcontrib>Roux, Benoît</creatorcontrib><creatorcontrib>Pastor, Richard W.</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyu Il</au><au>Jo, Sunhwan</au><au>Rui, Huan</au><au>Egwolf, Bernhard</au><au>Roux, Benoît</au><au>Pastor, Richard W.</au><au>Im, Wonpil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2012-01-30</date><risdate>2012</risdate><volume>33</volume><issue>3</issue><spage>331</spage><epage>339</epage><pages>331-339</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web‐based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm‐gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α‐Hemolysin (α‐HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all‐atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α‐HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5–7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22102176</pmid><doi>10.1002/jcc.21952</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2012-01, Vol.33 (3), p.331-339
issn 0192-8651
1096-987X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3240732
source MEDLINE; Wiley Journals
subjects Analytical chemistry
anthrax toxin protective antigen pore
Antigens
Antigens, Bacterial - chemistry
Antigens, Bacterial - immunology
Bacterial Toxins - immunology
Brownian motion
channel conductance
grand canonical Monte Carlo/Brownian dynamics
Hemolysin Proteins - chemistry
Internet
ion selectivity
Ion Transport
Ions
Sediment transport
Simulation
User-Computer Interface
voltage dependent anion channel
α-hemolysin
title Web interface for brownian dynamics simulation of ion transport and its applications to beta-barrel pores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Web%20interface%20for%20brownian%20dynamics%20simulation%20of%20ion%20transport%20and%20its%20applications%20to%20beta-barrel%20pores&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Lee,%20Kyu%20Il&rft.date=2012-01-30&rft.volume=33&rft.issue=3&rft.spage=331&rft.epage=339&rft.pages=331-339&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.21952&rft_dat=%3Cproquest_pubme%3E2556917001%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914934589&rft_id=info:pmid/22102176&rfr_iscdi=true