A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling

In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728
Hauptverfasser: Guan, Shenheng, Price, John C., Prusiner, Stanley B., Ghaemmaghami, Sina, Burlingame, Alma L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page M111.010728
container_issue 12
container_start_page M111.010728
container_title Molecular & cellular proteomics
container_volume 10
creator Guan, Shenheng
Price, John C.
Prusiner, Stanley B.
Ghaemmaghami, Sina
Burlingame, Alma L.
description In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.
doi_str_mv 10.1074/mcp.M111.010728
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3237081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620305788</els_id><sourcerecordid>909754504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</originalsourceid><addsrcrecordid>eNp1kc9PwyAUx4nRuDk9ezPcPG1CW0a5mCz-TrZoMncmFF4nS1sqMBP_ezs3Fz14gpf3eR_I-yJ0TsmIEp5d1bodzSilI9KVSX6A-pSlbCiyPDvc3_m4h05CWBGSEMrZMeolVKScp7SPVhN8q6LCL95pCME2S_xiW6hsA7h0Hs9UXavKqmZDRHA14NvPRtVWBzyPa2Mh4MX32DyqogL8FFx0LeAZdLWrrMZTVWx8y1N0VKoqwNnuHKDF_d3rzeNw-vzwdDOZDjXjeRyCShiA5tQIJriB0qTlWBjDMkWYyRPBaZ6MWTlmvFRFwrOcMl1oVuRFKQxP0wG63nrbdVGD0dBEryrZelsr_ymdsvJvp7Fvcuk-ZJqknOS0E1zuBN69ryFEWdugoapUA24dpCCCs4yRrCOvtqT2LgQP5f4VSuQmINkFJDcByW1A3cTF78_t-Z9EOkBsAehW9GHBy6AtNBqM9aCjNM7-K_8CLAah8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909754504</pqid></control><display><type>article</type><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</creator><creatorcontrib>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</creatorcontrib><description>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M111.010728</identifier><identifier>PMID: 21937731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blood Proteins - chemistry ; Blood Proteins - metabolism ; Brain - metabolism ; Chromatography, Liquid ; Data Interpretation, Statistical ; Isotope Labeling ; Liver - metabolism ; Mice ; Molecular Weight ; Peptide Fragments - chemistry ; Protein Stability ; Proteome - chemistry ; Proteome - metabolism ; Software ; Tandem Mass Spectrometry ; Technological Innovation and Resources</subject><ispartof>Molecular &amp; cellular proteomics, 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</citedby><cites>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237081/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237081/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21937731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Shenheng</creatorcontrib><creatorcontrib>Price, John C.</creatorcontrib><creatorcontrib>Prusiner, Stanley B.</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Burlingame, Alma L.</creatorcontrib><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</description><subject>Animals</subject><subject>Blood Proteins - chemistry</subject><subject>Blood Proteins - metabolism</subject><subject>Brain - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Data Interpretation, Statistical</subject><subject>Isotope Labeling</subject><subject>Liver - metabolism</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Stability</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Software</subject><subject>Tandem Mass Spectrometry</subject><subject>Technological Innovation and Resources</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9PwyAUx4nRuDk9ezPcPG1CW0a5mCz-TrZoMncmFF4nS1sqMBP_ezs3Fz14gpf3eR_I-yJ0TsmIEp5d1bodzSilI9KVSX6A-pSlbCiyPDvc3_m4h05CWBGSEMrZMeolVKScp7SPVhN8q6LCL95pCME2S_xiW6hsA7h0Hs9UXavKqmZDRHA14NvPRtVWBzyPa2Mh4MX32DyqogL8FFx0LeAZdLWrrMZTVWx8y1N0VKoqwNnuHKDF_d3rzeNw-vzwdDOZDjXjeRyCShiA5tQIJriB0qTlWBjDMkWYyRPBaZ6MWTlmvFRFwrOcMl1oVuRFKQxP0wG63nrbdVGD0dBEryrZelsr_ymdsvJvp7Fvcuk-ZJqknOS0E1zuBN69ryFEWdugoapUA24dpCCCs4yRrCOvtqT2LgQP5f4VSuQmINkFJDcByW1A3cTF78_t-Z9EOkBsAehW9GHBy6AtNBqM9aCjNM7-K_8CLAah8g</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Guan, Shenheng</creator><creator>Price, John C.</creator><creator>Prusiner, Stanley B.</creator><creator>Ghaemmaghami, Sina</creator><creator>Burlingame, Alma L.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><author>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blood Proteins - chemistry</topic><topic>Blood Proteins - metabolism</topic><topic>Brain - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Data Interpretation, Statistical</topic><topic>Isotope Labeling</topic><topic>Liver - metabolism</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Stability</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Software</topic><topic>Tandem Mass Spectrometry</topic><topic>Technological Innovation and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shenheng</creatorcontrib><creatorcontrib>Price, John C.</creatorcontrib><creatorcontrib>Prusiner, Stanley B.</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Burlingame, Alma L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shenheng</au><au>Price, John C.</au><au>Prusiner, Stanley B.</au><au>Ghaemmaghami, Sina</au><au>Burlingame, Alma L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>10</volume><issue>12</issue><spage>M111.010728</spage><epage>M111.010728</epage><pages>M111.010728-M111.010728</pages><artnum>M111.010728</artnum><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21937731</pmid><doi>10.1074/mcp.M111.010728</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3237081
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Blood Proteins - chemistry
Blood Proteins - metabolism
Brain - metabolism
Chromatography, Liquid
Data Interpretation, Statistical
Isotope Labeling
Liver - metabolism
Mice
Molecular Weight
Peptide Fragments - chemistry
Protein Stability
Proteome - chemistry
Proteome - metabolism
Software
Tandem Mass Spectrometry
Technological Innovation and Resources
title A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Processing%20Pipeline%20for%20Mammalian%20Proteome%20Dynamics%20Studies%20Using%20Stable%20Isotope%20Metabolic%20Labeling&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Guan,%20Shenheng&rft.date=2011-12-01&rft.volume=10&rft.issue=12&rft.spage=M111.010728&rft.epage=M111.010728&rft.pages=M111.010728-M111.010728&rft.artnum=M111.010728&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M111.010728&rft_dat=%3Cproquest_pubme%3E909754504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=909754504&rft_id=info:pmid/21937731&rft_els_id=S1535947620305788&rfr_iscdi=true