A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling
In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingam...
Gespeichert in:
Veröffentlicht in: | Molecular & cellular proteomics 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | M111.010728 |
---|---|
container_issue | 12 |
container_start_page | M111.010728 |
container_title | Molecular & cellular proteomics |
container_volume | 10 |
creator | Guan, Shenheng Price, John C. Prusiner, Stanley B. Ghaemmaghami, Sina Burlingame, Alma L. |
description | In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow. |
doi_str_mv | 10.1074/mcp.M111.010728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3237081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620305788</els_id><sourcerecordid>909754504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</originalsourceid><addsrcrecordid>eNp1kc9PwyAUx4nRuDk9ezPcPG1CW0a5mCz-TrZoMncmFF4nS1sqMBP_ezs3Fz14gpf3eR_I-yJ0TsmIEp5d1bodzSilI9KVSX6A-pSlbCiyPDvc3_m4h05CWBGSEMrZMeolVKScp7SPVhN8q6LCL95pCME2S_xiW6hsA7h0Hs9UXavKqmZDRHA14NvPRtVWBzyPa2Mh4MX32DyqogL8FFx0LeAZdLWrrMZTVWx8y1N0VKoqwNnuHKDF_d3rzeNw-vzwdDOZDjXjeRyCShiA5tQIJriB0qTlWBjDMkWYyRPBaZ6MWTlmvFRFwrOcMl1oVuRFKQxP0wG63nrbdVGD0dBEryrZelsr_ymdsvJvp7Fvcuk-ZJqknOS0E1zuBN69ryFEWdugoapUA24dpCCCs4yRrCOvtqT2LgQP5f4VSuQmINkFJDcByW1A3cTF78_t-Z9EOkBsAehW9GHBy6AtNBqM9aCjNM7-K_8CLAah8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909754504</pqid></control><display><type>article</type><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</creator><creatorcontrib>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</creatorcontrib><description>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.M111.010728</identifier><identifier>PMID: 21937731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blood Proteins - chemistry ; Blood Proteins - metabolism ; Brain - metabolism ; Chromatography, Liquid ; Data Interpretation, Statistical ; Isotope Labeling ; Liver - metabolism ; Mice ; Molecular Weight ; Peptide Fragments - chemistry ; Protein Stability ; Proteome - chemistry ; Proteome - metabolism ; Software ; Tandem Mass Spectrometry ; Technological Innovation and Resources</subject><ispartof>Molecular & cellular proteomics, 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</citedby><cites>FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237081/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237081/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21937731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Shenheng</creatorcontrib><creatorcontrib>Price, John C.</creatorcontrib><creatorcontrib>Prusiner, Stanley B.</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Burlingame, Alma L.</creatorcontrib><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><title>Molecular & cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</description><subject>Animals</subject><subject>Blood Proteins - chemistry</subject><subject>Blood Proteins - metabolism</subject><subject>Brain - metabolism</subject><subject>Chromatography, Liquid</subject><subject>Data Interpretation, Statistical</subject><subject>Isotope Labeling</subject><subject>Liver - metabolism</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Stability</subject><subject>Proteome - chemistry</subject><subject>Proteome - metabolism</subject><subject>Software</subject><subject>Tandem Mass Spectrometry</subject><subject>Technological Innovation and Resources</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9PwyAUx4nRuDk9ezPcPG1CW0a5mCz-TrZoMncmFF4nS1sqMBP_ezs3Fz14gpf3eR_I-yJ0TsmIEp5d1bodzSilI9KVSX6A-pSlbCiyPDvc3_m4h05CWBGSEMrZMeolVKScp7SPVhN8q6LCL95pCME2S_xiW6hsA7h0Hs9UXavKqmZDRHA14NvPRtVWBzyPa2Mh4MX32DyqogL8FFx0LeAZdLWrrMZTVWx8y1N0VKoqwNnuHKDF_d3rzeNw-vzwdDOZDjXjeRyCShiA5tQIJriB0qTlWBjDMkWYyRPBaZ6MWTlmvFRFwrOcMl1oVuRFKQxP0wG63nrbdVGD0dBEryrZelsr_ymdsvJvp7Fvcuk-ZJqknOS0E1zuBN69ryFEWdugoapUA24dpCCCs4yRrCOvtqT2LgQP5f4VSuQmINkFJDcByW1A3cTF78_t-Z9EOkBsAehW9GHBy6AtNBqM9aCjNM7-K_8CLAah8g</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Guan, Shenheng</creator><creator>Price, John C.</creator><creator>Prusiner, Stanley B.</creator><creator>Ghaemmaghami, Sina</creator><creator>Burlingame, Alma L.</creator><general>Elsevier Inc</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</title><author>Guan, Shenheng ; Price, John C. ; Prusiner, Stanley B. ; Ghaemmaghami, Sina ; Burlingame, Alma L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-ea25eec71d9597defd3f69dd54a05d829718265f657fab274815cbc5b8bf9d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blood Proteins - chemistry</topic><topic>Blood Proteins - metabolism</topic><topic>Brain - metabolism</topic><topic>Chromatography, Liquid</topic><topic>Data Interpretation, Statistical</topic><topic>Isotope Labeling</topic><topic>Liver - metabolism</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Stability</topic><topic>Proteome - chemistry</topic><topic>Proteome - metabolism</topic><topic>Software</topic><topic>Tandem Mass Spectrometry</topic><topic>Technological Innovation and Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shenheng</creatorcontrib><creatorcontrib>Price, John C.</creatorcontrib><creatorcontrib>Prusiner, Stanley B.</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Burlingame, Alma L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular & cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shenheng</au><au>Price, John C.</au><au>Prusiner, Stanley B.</au><au>Ghaemmaghami, Sina</au><au>Burlingame, Alma L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling</atitle><jtitle>Molecular & cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>10</volume><issue>12</issue><spage>M111.010728</spage><epage>M111.010728</epage><pages>M111.010728-M111.010728</pages><artnum>M111.010728</artnum><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>In a recent study, in vivo metabolic labeling using 15N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508–14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for 15N metabolic labeling. These fulfill the following functions: (1) cross-extraction of 15N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide 15N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21937731</pmid><doi>10.1074/mcp.M111.010728</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-9476 |
ispartof | Molecular & cellular proteomics, 2011-12, Vol.10 (12), p.M111.010728-M111.010728, Article M111.010728 |
issn | 1535-9476 1535-9484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3237081 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Blood Proteins - chemistry Blood Proteins - metabolism Brain - metabolism Chromatography, Liquid Data Interpretation, Statistical Isotope Labeling Liver - metabolism Mice Molecular Weight Peptide Fragments - chemistry Protein Stability Proteome - chemistry Proteome - metabolism Software Tandem Mass Spectrometry Technological Innovation and Resources |
title | A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Processing%20Pipeline%20for%20Mammalian%20Proteome%20Dynamics%20Studies%20Using%20Stable%20Isotope%20Metabolic%20Labeling&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Guan,%20Shenheng&rft.date=2011-12-01&rft.volume=10&rft.issue=12&rft.spage=M111.010728&rft.epage=M111.010728&rft.pages=M111.010728-M111.010728&rft.artnum=M111.010728&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.M111.010728&rft_dat=%3Cproquest_pubme%3E909754504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=909754504&rft_id=info:pmid/21937731&rft_els_id=S1535947620305788&rfr_iscdi=true |