Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL
DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2011-12, Vol.286 (49), p.42337-42348 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42348 |
---|---|
container_issue | 49 |
container_start_page | 42337 |
container_title | The Journal of biological chemistry |
container_volume | 286 |
creator | Yamamoto, Tatsuya Iino, Hitoshi Kim, Kwang Kuramitsu, Seiki Fukui, Kenji |
description | DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease. |
doi_str_mv | 10.1074/jbc.M111.277335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820871233</els_id><sourcerecordid>908740007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</originalsourceid><addsrcrecordid>eNp1kc1vEzEQxS0EomnhzA35xmlTf2bXF6QohA8pKYgWiZvltWdbV7vr1PYG9b-vo7QVHPDFkue9N-P5IfSOkjkltTi_be18Symds7rmXL5AM0oaXnFJf79EM0IYrRSTzQk6TemWlCMUfY1OGFWSCyln6M967x2MFnAXIl5e_agc7GAsTxlf5jjZPEXT459gYjTjNQyHQujwxWR7MAnwymTT32dv8aXPgP2IP10s8danwWR7U4w74yNejy6MT5btlDdv0KvO9AnePt5n6Nfn9dXqa7X5_uXbarmprBAsV4ItLG0IMeCMskQ5wayUvOWUtwB1C4u6a7gF4hwXrqMLysBaIzqjWtXJlp-hj8fc3dQO4GwZv_xH76IfTLzXwXj9b2X0N_o67DVnXKhalYAPjwEx3E2Qsh58stD3ZoQwJa1IU4uy2Looz49KG0NKEbrnLpToAy1daOkDLX2kVRzv_x7uWf-EpwjUUQBlRXsPUSfrD7Scj2CzdsH_N_wBuKSm6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908740007</pqid></control><display><type>article</type><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</creator><creatorcontrib>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</creatorcontrib><description>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.277335</identifier><identifier>PMID: 21953455</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphate - chemistry ; Amino Acid Sequence ; Bacillus subtilis - metabolism ; Catalysis ; Catalytic Domain ; Chromatography - methods ; Cross-Linking Reagents - chemistry ; DNA - chemistry ; DNA and Chromosomes ; DNA Mismatch Repair ; DNA Repair ; DNA-binding Protein ; DNase ; Endonucleases - chemistry ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Humans ; Lynch Syndrome ; Mass Spectrometry (MS) ; Mass Spectrometry - methods ; Molecular Conformation ; Molecular Sequence Data ; MutL Proteins ; Protein Structure, Tertiary ; Scattering, Radiation ; Sequence Homology, Amino Acid ; X-Rays</subject><ispartof>The Journal of biological chemistry, 2011-12, Vol.286 (49), p.42337-42348</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</citedby><cites>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234979/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234979/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iino, Hitoshi</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Fukui, Kenji</creatorcontrib><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Bacillus subtilis - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chromatography - methods</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA and Chromosomes</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>DNA-binding Protein</subject><subject>DNase</subject><subject>Endonucleases - chemistry</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Humans</subject><subject>Lynch Syndrome</subject><subject>Mass Spectrometry (MS)</subject><subject>Mass Spectrometry - methods</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>MutL Proteins</subject><subject>Protein Structure, Tertiary</subject><subject>Scattering, Radiation</subject><subject>Sequence Homology, Amino Acid</subject><subject>X-Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vEzEQxS0EomnhzA35xmlTf2bXF6QohA8pKYgWiZvltWdbV7vr1PYG9b-vo7QVHPDFkue9N-P5IfSOkjkltTi_be18Symds7rmXL5AM0oaXnFJf79EM0IYrRSTzQk6TemWlCMUfY1OGFWSCyln6M967x2MFnAXIl5e_agc7GAsTxlf5jjZPEXT459gYjTjNQyHQujwxWR7MAnwymTT32dv8aXPgP2IP10s8danwWR7U4w74yNejy6MT5btlDdv0KvO9AnePt5n6Nfn9dXqa7X5_uXbarmprBAsV4ItLG0IMeCMskQ5wayUvOWUtwB1C4u6a7gF4hwXrqMLysBaIzqjWtXJlp-hj8fc3dQO4GwZv_xH76IfTLzXwXj9b2X0N_o67DVnXKhalYAPjwEx3E2Qsh58stD3ZoQwJa1IU4uy2Looz49KG0NKEbrnLpToAy1daOkDLX2kVRzv_x7uWf-EpwjUUQBlRXsPUSfrD7Scj2CzdsH_N_wBuKSm6A</recordid><startdate>20111209</startdate><enddate>20111209</enddate><creator>Yamamoto, Tatsuya</creator><creator>Iino, Hitoshi</creator><creator>Kim, Kwang</creator><creator>Kuramitsu, Seiki</creator><creator>Fukui, Kenji</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111209</creationdate><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><author>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Bacillus subtilis - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chromatography - methods</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA and Chromosomes</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>DNA-binding Protein</topic><topic>DNase</topic><topic>Endonucleases - chemistry</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Humans</topic><topic>Lynch Syndrome</topic><topic>Mass Spectrometry (MS)</topic><topic>Mass Spectrometry - methods</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>MutL Proteins</topic><topic>Protein Structure, Tertiary</topic><topic>Scattering, Radiation</topic><topic>Sequence Homology, Amino Acid</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iino, Hitoshi</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Fukui, Kenji</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Tatsuya</au><au>Iino, Hitoshi</au><au>Kim, Kwang</au><au>Kuramitsu, Seiki</au><au>Fukui, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-12-09</date><risdate>2011</risdate><volume>286</volume><issue>49</issue><spage>42337</spage><epage>42348</epage><pages>42337-42348</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21953455</pmid><doi>10.1074/jbc.M111.277335</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2011-12, Vol.286 (49), p.42337-42348 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234979 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphate - chemistry Amino Acid Sequence Bacillus subtilis - metabolism Catalysis Catalytic Domain Chromatography - methods Cross-Linking Reagents - chemistry DNA - chemistry DNA and Chromosomes DNA Mismatch Repair DNA Repair DNA-binding Protein DNase Endonucleases - chemistry Escherichia coli - metabolism Escherichia coli Proteins - chemistry Humans Lynch Syndrome Mass Spectrometry (MS) Mass Spectrometry - methods Molecular Conformation Molecular Sequence Data MutL Proteins Protein Structure, Tertiary Scattering, Radiation Sequence Homology, Amino Acid X-Rays |
title | Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20ATP-dependent%20Structural%20Rearrangement%20of%20Nuclease%20Catalytic%20Site%20in%20DNA%20Mismatch%20Repair%20Endonuclease%20MutL&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yamamoto,%20Tatsuya&rft.date=2011-12-09&rft.volume=286&rft.issue=49&rft.spage=42337&rft.epage=42348&rft.pages=42337-42348&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.277335&rft_dat=%3Cproquest_pubme%3E908740007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908740007&rft_id=info:pmid/21953455&rft_els_id=S0021925820871233&rfr_iscdi=true |