Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL

DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-12, Vol.286 (49), p.42337-42348
Hauptverfasser: Yamamoto, Tatsuya, Iino, Hitoshi, Kim, Kwang, Kuramitsu, Seiki, Fukui, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42348
container_issue 49
container_start_page 42337
container_title The Journal of biological chemistry
container_volume 286
creator Yamamoto, Tatsuya
Iino, Hitoshi
Kim, Kwang
Kuramitsu, Seiki
Fukui, Kenji
description DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.
doi_str_mv 10.1074/jbc.M111.277335
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820871233</els_id><sourcerecordid>908740007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</originalsourceid><addsrcrecordid>eNp1kc1vEzEQxS0EomnhzA35xmlTf2bXF6QohA8pKYgWiZvltWdbV7vr1PYG9b-vo7QVHPDFkue9N-P5IfSOkjkltTi_be18Symds7rmXL5AM0oaXnFJf79EM0IYrRSTzQk6TemWlCMUfY1OGFWSCyln6M967x2MFnAXIl5e_agc7GAsTxlf5jjZPEXT459gYjTjNQyHQujwxWR7MAnwymTT32dv8aXPgP2IP10s8danwWR7U4w74yNejy6MT5btlDdv0KvO9AnePt5n6Nfn9dXqa7X5_uXbarmprBAsV4ItLG0IMeCMskQ5wayUvOWUtwB1C4u6a7gF4hwXrqMLysBaIzqjWtXJlp-hj8fc3dQO4GwZv_xH76IfTLzXwXj9b2X0N_o67DVnXKhalYAPjwEx3E2Qsh58stD3ZoQwJa1IU4uy2Looz49KG0NKEbrnLpToAy1daOkDLX2kVRzv_x7uWf-EpwjUUQBlRXsPUSfrD7Scj2CzdsH_N_wBuKSm6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908740007</pqid></control><display><type>article</type><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</creator><creatorcontrib>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</creatorcontrib><description>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.277335</identifier><identifier>PMID: 21953455</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphate - chemistry ; Amino Acid Sequence ; Bacillus subtilis - metabolism ; Catalysis ; Catalytic Domain ; Chromatography - methods ; Cross-Linking Reagents - chemistry ; DNA - chemistry ; DNA and Chromosomes ; DNA Mismatch Repair ; DNA Repair ; DNA-binding Protein ; DNase ; Endonucleases - chemistry ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Humans ; Lynch Syndrome ; Mass Spectrometry (MS) ; Mass Spectrometry - methods ; Molecular Conformation ; Molecular Sequence Data ; MutL Proteins ; Protein Structure, Tertiary ; Scattering, Radiation ; Sequence Homology, Amino Acid ; X-Rays</subject><ispartof>The Journal of biological chemistry, 2011-12, Vol.286 (49), p.42337-42348</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</citedby><cites>FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234979/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234979/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iino, Hitoshi</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Fukui, Kenji</creatorcontrib><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Bacillus subtilis - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chromatography - methods</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA and Chromosomes</subject><subject>DNA Mismatch Repair</subject><subject>DNA Repair</subject><subject>DNA-binding Protein</subject><subject>DNase</subject><subject>Endonucleases - chemistry</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Humans</subject><subject>Lynch Syndrome</subject><subject>Mass Spectrometry (MS)</subject><subject>Mass Spectrometry - methods</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>MutL Proteins</subject><subject>Protein Structure, Tertiary</subject><subject>Scattering, Radiation</subject><subject>Sequence Homology, Amino Acid</subject><subject>X-Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vEzEQxS0EomnhzA35xmlTf2bXF6QohA8pKYgWiZvltWdbV7vr1PYG9b-vo7QVHPDFkue9N-P5IfSOkjkltTi_be18Symds7rmXL5AM0oaXnFJf79EM0IYrRSTzQk6TemWlCMUfY1OGFWSCyln6M967x2MFnAXIl5e_agc7GAsTxlf5jjZPEXT459gYjTjNQyHQujwxWR7MAnwymTT32dv8aXPgP2IP10s8danwWR7U4w74yNejy6MT5btlDdv0KvO9AnePt5n6Nfn9dXqa7X5_uXbarmprBAsV4ItLG0IMeCMskQ5wayUvOWUtwB1C4u6a7gF4hwXrqMLysBaIzqjWtXJlp-hj8fc3dQO4GwZv_xH76IfTLzXwXj9b2X0N_o67DVnXKhalYAPjwEx3E2Qsh58stD3ZoQwJa1IU4uy2Looz49KG0NKEbrnLpToAy1daOkDLX2kVRzv_x7uWf-EpwjUUQBlRXsPUSfrD7Scj2CzdsH_N_wBuKSm6A</recordid><startdate>20111209</startdate><enddate>20111209</enddate><creator>Yamamoto, Tatsuya</creator><creator>Iino, Hitoshi</creator><creator>Kim, Kwang</creator><creator>Kuramitsu, Seiki</creator><creator>Fukui, Kenji</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111209</creationdate><title>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</title><author>Yamamoto, Tatsuya ; Iino, Hitoshi ; Kim, Kwang ; Kuramitsu, Seiki ; Fukui, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-426c1800aeda9c09d42c553b313bee7be67f83ce0dd34df1612ecca4fa9b9f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Bacillus subtilis - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chromatography - methods</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA and Chromosomes</topic><topic>DNA Mismatch Repair</topic><topic>DNA Repair</topic><topic>DNA-binding Protein</topic><topic>DNase</topic><topic>Endonucleases - chemistry</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Humans</topic><topic>Lynch Syndrome</topic><topic>Mass Spectrometry (MS)</topic><topic>Mass Spectrometry - methods</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>MutL Proteins</topic><topic>Protein Structure, Tertiary</topic><topic>Scattering, Radiation</topic><topic>Sequence Homology, Amino Acid</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Tatsuya</creatorcontrib><creatorcontrib>Iino, Hitoshi</creatorcontrib><creatorcontrib>Kim, Kwang</creatorcontrib><creatorcontrib>Kuramitsu, Seiki</creatorcontrib><creatorcontrib>Fukui, Kenji</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Tatsuya</au><au>Iino, Hitoshi</au><au>Kim, Kwang</au><au>Kuramitsu, Seiki</au><au>Fukui, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-12-09</date><risdate>2011</risdate><volume>286</volume><issue>49</issue><spage>42337</spage><epage>42348</epage><pages>42337-42348</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>DNA mismatch repair (MMR) greatly contributes to genome integrity via the correction of mismatched bases that are mainly generated by replication errors. Postreplicative MMR excises a relatively long tract of error-containing single-stranded DNA. MutL is a widely conserved nicking endonuclease that directs the excision reaction to the error-containing strand of the duplex by specifically nicking the daughter strand. Because MutL apparently exhibits nonspecific nicking endonuclease activity in vitro, the regulatory mechanism of MutL has been argued. Recent studies suggest ATP-dependent conformational and functional changes of MutL, indicating that the regulatory mechanism involves the ATP binding and hydrolysis cycle. In this study, we investigated the effect of ATP binding on the structure of MutL. First, a cross-linking experiment confirmed that the N-terminal ATPase domain physically interacts with the C-terminal endonuclease domain. Next, hydrogen/deuterium exchange mass spectrometry clarified that the binding of ATP to the N-terminal domain induces local structural changes at the catalytic sites of MutL C-terminal domain. Finally, on the basis of the results of the hydrogen/deuterium exchange experiment, we successfully identified novel regions essential for the endonuclease activity of MutL. The results clearly show that ATP modulates the nicking endonuclease activity of MutL via structural rearrangements of the catalytic site. In addition, several Lynch syndrome-related mutations in human MutL homolog are located in the position corresponding to the newly identified catalytic region. Our data contribute toward understanding the relationship between mutations in MutL homolog and human disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21953455</pmid><doi>10.1074/jbc.M111.277335</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-12, Vol.286 (49), p.42337-42348
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3234979
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphate - chemistry
Amino Acid Sequence
Bacillus subtilis - metabolism
Catalysis
Catalytic Domain
Chromatography - methods
Cross-Linking Reagents - chemistry
DNA - chemistry
DNA and Chromosomes
DNA Mismatch Repair
DNA Repair
DNA-binding Protein
DNase
Endonucleases - chemistry
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Humans
Lynch Syndrome
Mass Spectrometry (MS)
Mass Spectrometry - methods
Molecular Conformation
Molecular Sequence Data
MutL Proteins
Protein Structure, Tertiary
Scattering, Radiation
Sequence Homology, Amino Acid
X-Rays
title Evidence for ATP-dependent Structural Rearrangement of Nuclease Catalytic Site in DNA Mismatch Repair Endonuclease MutL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20ATP-dependent%20Structural%20Rearrangement%20of%20Nuclease%20Catalytic%20Site%20in%20DNA%20Mismatch%20Repair%20Endonuclease%20MutL&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yamamoto,%20Tatsuya&rft.date=2011-12-09&rft.volume=286&rft.issue=49&rft.spage=42337&rft.epage=42348&rft.pages=42337-42348&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.277335&rft_dat=%3Cproquest_pubme%3E908740007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908740007&rft_id=info:pmid/21953455&rft_els_id=S0021925820871233&rfr_iscdi=true