Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea

Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2011-12, Vol.111 (6), p.1644-1653
Hauptverfasser: ECKERT, Danny J, LO, Yu L, SABOISKY, Julian P, JORDAN, Amy S, WHITE, David P, MALHOTRA, Atul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1653
container_issue 6
container_start_page 1644
container_title Journal of applied physiology (1985)
container_volume 111
creator ECKERT, Danny J
LO, Yu L
SABOISKY, Julian P
JORDAN, Amy S
WHITE, David P
MALHOTRA, Atul
description Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P < 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P < 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.
doi_str_mv 10.1152/japplphysiol.00653.2011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3233889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911935767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-6301d1a8e35c9680ef56a17c2d0ed1b1d192fc69acc28728e3a10b6f1664a59b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAUxCMEokvhK4CFhDhlsZ3Yji9IVcU_qRIH4Gy9OC9dr7K2sZOifHu87VIKp3eY34zeaKrqFaNbxgR_t4cYp7hbswvTllIpmi2njD2qNkXlNZOUPa42nRK0VqJTZ9WznPeUsrYV7Gl1xlnXCaXVplq_oc8huUOYQyLj4u3sgidhJPMOyRIjphpc-gUrOSzZTpgJ-IEkzNElKJ6V5NuElcQULObs_DVxnix-TggzDiT0eU5Lyb1BkifESCB6hOfVkxGmjC9O97z68fHD98vP9dXXT18uL65qKxo917KhbGDQYSOslh3FUUhgyvKB4sD6omk-WqnBWt4pXjhgtJcjk7IFofvmvHp_lxuX_oCDxfIYTCaWzpBWE8CZfxXvduY63JiGN03X6RLw9hSQws8F82wOLlucJvAYlmw0Y7oRSqpCvv6P3Icl-dKuQLTlutXHOHUH2RRyTjjev8KoOY5rHo5rbsc1x3GL8-XDJve-P2sW4M0JgGxhGhN46_JfTnAhKGfNbzPeteg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910429499</pqid></control><display><type>article</type><title>Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>ECKERT, Danny J ; LO, Yu L ; SABOISKY, Julian P ; JORDAN, Amy S ; WHITE, David P ; MALHOTRA, Atul</creator><creatorcontrib>ECKERT, Danny J ; LO, Yu L ; SABOISKY, Julian P ; JORDAN, Amy S ; WHITE, David P ; MALHOTRA, Atul</creatorcontrib><description>Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P &lt; 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P &lt; 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00653.2011</identifier><identifier>PMID: 21885797</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: American Physiological Society</publisher><subject>Adult ; Biological and medical sciences ; Case-Control Studies ; Electromyography ; Evoked Potentials ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Male ; Middle Aged ; Motor ability ; Pathogenesis ; Physiology ; Polysomnography ; Psychomotor Performance - physiology ; Reflex - physiology ; Respiration, Artificial ; Respiratory Muscles - physiopathology ; Respiratory system ; Sleep apnea ; Sleep Apnea, Obstructive - physiopathology ; Sleep Apnea, Obstructive - therapy ; Tongue - physiopathology ; Ventilators, Negative-Pressure ; Wakefulness - physiology</subject><ispartof>Journal of applied physiology (1985), 2011-12, Vol.111 (6), p.1644-1653</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Physiological Society Dec 2011</rights><rights>Copyright © 2011 the American Physiological Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-6301d1a8e35c9680ef56a17c2d0ed1b1d192fc69acc28728e3a10b6f1664a59b3</citedby><cites>FETCH-LOGICAL-c539t-6301d1a8e35c9680ef56a17c2d0ed1b1d192fc69acc28728e3a10b6f1664a59b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25255021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21885797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ECKERT, Danny J</creatorcontrib><creatorcontrib>LO, Yu L</creatorcontrib><creatorcontrib>SABOISKY, Julian P</creatorcontrib><creatorcontrib>JORDAN, Amy S</creatorcontrib><creatorcontrib>WHITE, David P</creatorcontrib><creatorcontrib>MALHOTRA, Atul</creatorcontrib><title>Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P &lt; 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P &lt; 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Case-Control Studies</subject><subject>Electromyography</subject><subject>Evoked Potentials</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Motor ability</subject><subject>Pathogenesis</subject><subject>Physiology</subject><subject>Polysomnography</subject><subject>Psychomotor Performance - physiology</subject><subject>Reflex - physiology</subject><subject>Respiration, Artificial</subject><subject>Respiratory Muscles - physiopathology</subject><subject>Respiratory system</subject><subject>Sleep apnea</subject><subject>Sleep Apnea, Obstructive - physiopathology</subject><subject>Sleep Apnea, Obstructive - therapy</subject><subject>Tongue - physiopathology</subject><subject>Ventilators, Negative-Pressure</subject><subject>Wakefulness - physiology</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAUxCMEokvhK4CFhDhlsZ3Yji9IVcU_qRIH4Gy9OC9dr7K2sZOifHu87VIKp3eY34zeaKrqFaNbxgR_t4cYp7hbswvTllIpmi2njD2qNkXlNZOUPa42nRK0VqJTZ9WznPeUsrYV7Gl1xlnXCaXVplq_oc8huUOYQyLj4u3sgidhJPMOyRIjphpc-gUrOSzZTpgJ-IEkzNElKJ6V5NuElcQULObs_DVxnix-TggzDiT0eU5Lyb1BkifESCB6hOfVkxGmjC9O97z68fHD98vP9dXXT18uL65qKxo917KhbGDQYSOslh3FUUhgyvKB4sD6omk-WqnBWt4pXjhgtJcjk7IFofvmvHp_lxuX_oCDxfIYTCaWzpBWE8CZfxXvduY63JiGN03X6RLw9hSQws8F82wOLlucJvAYlmw0Y7oRSqpCvv6P3Icl-dKuQLTlutXHOHUH2RRyTjjev8KoOY5rHo5rbsc1x3GL8-XDJve-P2sW4M0JgGxhGhN46_JfTnAhKGfNbzPeteg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>ECKERT, Danny J</creator><creator>LO, Yu L</creator><creator>SABOISKY, Julian P</creator><creator>JORDAN, Amy S</creator><creator>WHITE, David P</creator><creator>MALHOTRA, Atul</creator><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea</title><author>ECKERT, Danny J ; LO, Yu L ; SABOISKY, Julian P ; JORDAN, Amy S ; WHITE, David P ; MALHOTRA, Atul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-6301d1a8e35c9680ef56a17c2d0ed1b1d192fc69acc28728e3a10b6f1664a59b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Case-Control Studies</topic><topic>Electromyography</topic><topic>Evoked Potentials</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Motor ability</topic><topic>Pathogenesis</topic><topic>Physiology</topic><topic>Polysomnography</topic><topic>Psychomotor Performance - physiology</topic><topic>Reflex - physiology</topic><topic>Respiration, Artificial</topic><topic>Respiratory Muscles - physiopathology</topic><topic>Respiratory system</topic><topic>Sleep apnea</topic><topic>Sleep Apnea, Obstructive - physiopathology</topic><topic>Sleep Apnea, Obstructive - therapy</topic><topic>Tongue - physiopathology</topic><topic>Ventilators, Negative-Pressure</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ECKERT, Danny J</creatorcontrib><creatorcontrib>LO, Yu L</creatorcontrib><creatorcontrib>SABOISKY, Julian P</creatorcontrib><creatorcontrib>JORDAN, Amy S</creatorcontrib><creatorcontrib>WHITE, David P</creatorcontrib><creatorcontrib>MALHOTRA, Atul</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ECKERT, Danny J</au><au>LO, Yu L</au><au>SABOISKY, Julian P</au><au>JORDAN, Amy S</au><au>WHITE, David P</au><au>MALHOTRA, Atul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>111</volume><issue>6</issue><spage>1644</spage><epage>1653</epage><pages>1644-1653</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P &lt; 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P &lt; 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.</abstract><cop>Bethesda, MD</cop><pub>American Physiological Society</pub><pmid>21885797</pmid><doi>10.1152/japplphysiol.00653.2011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2011-12, Vol.111 (6), p.1644-1653
issn 8750-7587
1522-1601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3233889
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adult
Biological and medical sciences
Case-Control Studies
Electromyography
Evoked Potentials
Female
Fundamental and applied biological sciences. Psychology
Humans
Male
Middle Aged
Motor ability
Pathogenesis
Physiology
Polysomnography
Psychomotor Performance - physiology
Reflex - physiology
Respiration, Artificial
Respiratory Muscles - physiopathology
Respiratory system
Sleep apnea
Sleep Apnea, Obstructive - physiopathology
Sleep Apnea, Obstructive - therapy
Tongue - physiopathology
Ventilators, Negative-Pressure
Wakefulness - physiology
title Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensorimotor%20function%20of%20the%20upper-airway%20muscles%20and%20respiratory%20sensory%20processing%20in%20untreated%20obstructive%20sleep%20apnea&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=ECKERT,%20Danny%20J&rft.date=2011-12-01&rft.volume=111&rft.issue=6&rft.spage=1644&rft.epage=1653&rft.pages=1644-1653&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/japplphysiol.00653.2011&rft_dat=%3Cproquest_pubme%3E911935767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910429499&rft_id=info:pmid/21885797&rfr_iscdi=true