Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?
[Display omitted] ► Histone chaperones Vps75 and Asf1 stimulate Rtt109 acetyltransferase toward histone H3 approximately 100-fold. ► Rtt109-Asf1 acetylates H3 K56, while Rtt109-Vps75 acetylates H3 K9 and K27. ► Auto-acetylation of Rtt109 at K290 is essential and is not influenced by Vps75. ► Based o...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2011-12, Vol.21 (6), p.728-734 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 6 |
container_start_page | 728 |
container_title | Current opinion in structural biology |
container_volume | 21 |
creator | D’Arcy, Sheena Luger, Karolin |
description | [Display omitted]
► Histone chaperones Vps75 and Asf1 stimulate Rtt109 acetyltransferase toward histone H3 approximately 100-fold. ► Rtt109-Asf1 acetylates H3 K56, while Rtt109-Vps75 acetylates H3 K9 and K27. ► Auto-acetylation of Rtt109 at K290 is essential and is not influenced by Vps75. ► Based on structural work, the stoichiometry of Vps75-Rtt109 is uncertain; it may be 2:1 or 2:2. ► Vps75 imports Rtt109 into the nucleus, stabilizes Rtt109, and positions H3 for acetylation by Rtt109.
Rtt109 (Regulator of Ty1 Transposition 109) is a fungal-specific histone acetyltransferase required for modification of histone H3 K9, K27 and K56. These acetylations are associated with nascent histone H3 and play an integral role in replication-coupled and repair-coupled nucleosome assembly. Rtt109 is unique among acetyltransferases as it is activated by a histone chaperone; either Vps75 (Vacuolar Protein Sorting 75) or Asf1 (Anti-silencing Function 1). Recent biochemical, structural and genetic studies have shed light on the intricacies of this activation. It is now clear that Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. This reinforces that Asf1 and Vps75 activate Rtt109 via distinct molecular mechanisms. Structures of Rtt109-Vps75 further imply that Vps75 positions histone H3 in the Rtt109 active site. These structures however raise questions regarding the stoichiometry of the Rtt109-Vps75 complex. This has ramifications for determining the physiological Rtt109 substrate. |
doi_str_mv | 10.1016/j.sbi.2011.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3232334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X11001680</els_id><sourcerecordid>1468379687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-60d33aed899155cee9a22a551e9067ab644d5656d62a6df11243503f33a199093</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModlv9AL5I3vRlxptkJjtRUKTUP1AQxELfQja508m6m6xJprLf3ixbi76UQPJwf-fce3MIecGgZcDkm3WbV77lwFgLqgXoH5EFG5aqASGuH5MFqF41XQfXJ-Q05zUASNYNT8kJ58DFwIcFma6Cw5SLCc6HGzr5XGJAaiyW_aYkE_KIyWSk30thoGguabZlThUJjo5zsMXH8JZO8TfdmrCndjI7TNUjUxfr5Qst5id-eEaejGaT8fnde0auPl38OP_SXH77_PX842Vju0GURoITwqAblGJ9bxGV4dz0PUMFcmlWsutcL3vpJDfSjYzxTvQgxipiSoESZ-T90Xc3r7boLIa6xUbvkt-atNfReP1_JfhJ38RbLXg9oqsGr-4MUvw1Yy5667PFzcYEjHPWtQk_TDdU8vWDJOvkIJZKDsuKsiNqU8w54Xg_EAN9yFKvdc1SH7LUoHTNsmpe_rvJveJveBV4dwSw_uetx6Sz9RgsOp_QFu2if8D-D9jfsOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468379687</pqid></control><display><type>article</type><title>Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>D’Arcy, Sheena ; Luger, Karolin</creator><creatorcontrib>D’Arcy, Sheena ; Luger, Karolin</creatorcontrib><description>[Display omitted]
► Histone chaperones Vps75 and Asf1 stimulate Rtt109 acetyltransferase toward histone H3 approximately 100-fold. ► Rtt109-Asf1 acetylates H3 K56, while Rtt109-Vps75 acetylates H3 K9 and K27. ► Auto-acetylation of Rtt109 at K290 is essential and is not influenced by Vps75. ► Based on structural work, the stoichiometry of Vps75-Rtt109 is uncertain; it may be 2:1 or 2:2. ► Vps75 imports Rtt109 into the nucleus, stabilizes Rtt109, and positions H3 for acetylation by Rtt109.
Rtt109 (Regulator of Ty1 Transposition 109) is a fungal-specific histone acetyltransferase required for modification of histone H3 K9, K27 and K56. These acetylations are associated with nascent histone H3 and play an integral role in replication-coupled and repair-coupled nucleosome assembly. Rtt109 is unique among acetyltransferases as it is activated by a histone chaperone; either Vps75 (Vacuolar Protein Sorting 75) or Asf1 (Anti-silencing Function 1). Recent biochemical, structural and genetic studies have shed light on the intricacies of this activation. It is now clear that Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. This reinforces that Asf1 and Vps75 activate Rtt109 via distinct molecular mechanisms. Structures of Rtt109-Vps75 further imply that Vps75 positions histone H3 in the Rtt109 active site. These structures however raise questions regarding the stoichiometry of the Rtt109-Vps75 complex. This has ramifications for determining the physiological Rtt109 substrate.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2011.09.005</identifier><identifier>PMID: 22023828</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Catalytic Domain ; Histone Acetyltransferases - chemistry ; Histone Acetyltransferases - metabolism ; Models, Molecular ; Molecular Chaperones - chemistry ; Molecular Chaperones - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Current opinion in structural biology, 2011-12, Vol.21 (6), p.728-734</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>2011 Elsevier Ltd. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-60d33aed899155cee9a22a551e9067ab644d5656d62a6df11243503f33a199093</citedby><cites>FETCH-LOGICAL-c483t-60d33aed899155cee9a22a551e9067ab644d5656d62a6df11243503f33a199093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sbi.2011.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22023828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Arcy, Sheena</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><title>Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>[Display omitted]
► Histone chaperones Vps75 and Asf1 stimulate Rtt109 acetyltransferase toward histone H3 approximately 100-fold. ► Rtt109-Asf1 acetylates H3 K56, while Rtt109-Vps75 acetylates H3 K9 and K27. ► Auto-acetylation of Rtt109 at K290 is essential and is not influenced by Vps75. ► Based on structural work, the stoichiometry of Vps75-Rtt109 is uncertain; it may be 2:1 or 2:2. ► Vps75 imports Rtt109 into the nucleus, stabilizes Rtt109, and positions H3 for acetylation by Rtt109.
Rtt109 (Regulator of Ty1 Transposition 109) is a fungal-specific histone acetyltransferase required for modification of histone H3 K9, K27 and K56. These acetylations are associated with nascent histone H3 and play an integral role in replication-coupled and repair-coupled nucleosome assembly. Rtt109 is unique among acetyltransferases as it is activated by a histone chaperone; either Vps75 (Vacuolar Protein Sorting 75) or Asf1 (Anti-silencing Function 1). Recent biochemical, structural and genetic studies have shed light on the intricacies of this activation. It is now clear that Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. This reinforces that Asf1 and Vps75 activate Rtt109 via distinct molecular mechanisms. Structures of Rtt109-Vps75 further imply that Vps75 positions histone H3 in the Rtt109 active site. These structures however raise questions regarding the stoichiometry of the Rtt109-Vps75 complex. This has ramifications for determining the physiological Rtt109 substrate.</description><subject>Catalytic Domain</subject><subject>Histone Acetyltransferases - chemistry</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Chaperones - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModlv9AL5I3vRlxptkJjtRUKTUP1AQxELfQja508m6m6xJprLf3ixbi76UQPJwf-fce3MIecGgZcDkm3WbV77lwFgLqgXoH5EFG5aqASGuH5MFqF41XQfXJ-Q05zUASNYNT8kJ58DFwIcFma6Cw5SLCc6HGzr5XGJAaiyW_aYkE_KIyWSk30thoGguabZlThUJjo5zsMXH8JZO8TfdmrCndjI7TNUjUxfr5Qst5id-eEaejGaT8fnde0auPl38OP_SXH77_PX842Vju0GURoITwqAblGJ9bxGV4dz0PUMFcmlWsutcL3vpJDfSjYzxTvQgxipiSoESZ-T90Xc3r7boLIa6xUbvkt-atNfReP1_JfhJ38RbLXg9oqsGr-4MUvw1Yy5667PFzcYEjHPWtQk_TDdU8vWDJOvkIJZKDsuKsiNqU8w54Xg_EAN9yFKvdc1SH7LUoHTNsmpe_rvJveJveBV4dwSw_uetx6Sz9RgsOp_QFu2if8D-D9jfsOE</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>D’Arcy, Sheena</creator><creator>Luger, Karolin</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?</title><author>D’Arcy, Sheena ; Luger, Karolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-60d33aed899155cee9a22a551e9067ab644d5656d62a6df11243503f33a199093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Catalytic Domain</topic><topic>Histone Acetyltransferases - chemistry</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Chaperones - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Arcy, Sheena</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Arcy, Sheena</au><au>Luger, Karolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>21</volume><issue>6</issue><spage>728</spage><epage>734</epage><pages>728-734</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>[Display omitted]
► Histone chaperones Vps75 and Asf1 stimulate Rtt109 acetyltransferase toward histone H3 approximately 100-fold. ► Rtt109-Asf1 acetylates H3 K56, while Rtt109-Vps75 acetylates H3 K9 and K27. ► Auto-acetylation of Rtt109 at K290 is essential and is not influenced by Vps75. ► Based on structural work, the stoichiometry of Vps75-Rtt109 is uncertain; it may be 2:1 or 2:2. ► Vps75 imports Rtt109 into the nucleus, stabilizes Rtt109, and positions H3 for acetylation by Rtt109.
Rtt109 (Regulator of Ty1 Transposition 109) is a fungal-specific histone acetyltransferase required for modification of histone H3 K9, K27 and K56. These acetylations are associated with nascent histone H3 and play an integral role in replication-coupled and repair-coupled nucleosome assembly. Rtt109 is unique among acetyltransferases as it is activated by a histone chaperone; either Vps75 (Vacuolar Protein Sorting 75) or Asf1 (Anti-silencing Function 1). Recent biochemical, structural and genetic studies have shed light on the intricacies of this activation. It is now clear that Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. This reinforces that Asf1 and Vps75 activate Rtt109 via distinct molecular mechanisms. Structures of Rtt109-Vps75 further imply that Vps75 positions histone H3 in the Rtt109 active site. These structures however raise questions regarding the stoichiometry of the Rtt109-Vps75 complex. This has ramifications for determining the physiological Rtt109 substrate.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22023828</pmid><doi>10.1016/j.sbi.2011.09.005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-440X |
ispartof | Current opinion in structural biology, 2011-12, Vol.21 (6), p.728-734 |
issn | 0959-440X 1879-033X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3232334 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Catalytic Domain Histone Acetyltransferases - chemistry Histone Acetyltransferases - metabolism Models, Molecular Molecular Chaperones - chemistry Molecular Chaperones - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Structure-Activity Relationship Substrate Specificity |
title | Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20histone%20acetyltransferase%20Rtt109%20structure%20and%20function:%20how%20many%20chaperones%20does%20it%20take?&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=D%E2%80%99Arcy,%20Sheena&rft.date=2011-12-01&rft.volume=21&rft.issue=6&rft.spage=728&rft.epage=734&rft.pages=728-734&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2011.09.005&rft_dat=%3Cproquest_pubme%3E1468379687%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468379687&rft_id=info:pmid/22023828&rft_els_id=S0959440X11001680&rfr_iscdi=true |