Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families

Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ∼60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of human genetics : EJHG 2011-12, Vol.19 (12), p.1256-1263
Hauptverfasser: Hebrard, Maxime, Manes, Gaël, Bocquet, Béatrice, Meunier, Isabelle, Coustes-Chazalette, Delphine, Hérald, Emilie, Sénéchal, Audrey, Bolland-Augé, Anne, Zelenika, Diana, Hamel, Christian P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 12
container_start_page 1256
container_title European journal of human genetics : EJHG
container_volume 19
creator Hebrard, Maxime
Manes, Gaël
Bocquet, Béatrice
Meunier, Isabelle
Coustes-Chazalette, Delphine
Hérald, Emilie
Sénéchal, Audrey
Bolland-Augé, Anne
Zelenika, Diana
Hamel, Christian P
description Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ∼60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non-consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely tubby-like protein 1 ( TULP1 ) and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for two novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for two novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only two affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization.
doi_str_mv 10.1038/ejhg.2011.133
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3230368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968170116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d97d6c3ead68a87fb53b1d4d06bbb0cee82db073fcc3e934715e7a3110fcebbc3</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rp66a1EQbzqmDRtmrkRZPALFrzR63CannYytElN0oX9Gf5jE2ecVUG8ygnnyXs-8hbFU0Y3jHL5Gg_7cVNRxjaM83vFJatbUTY1l_dTTJksa8n4RfEohAOlKdmyh8VFxdptVXF6WXzfubkz1tiRjGiRzLAs-QK2J8serYu3CxIIAUOY0UYyOE8GCJHMa4RonCWDsX1-Yiyxzpba2QB2XI1FtwYCa3TBzTARjzqJmBtMUUwlowlkMWNWdQGS6Gwmg-Fx8WCAKeCT03lVfH3_7svuY3n9-cOn3dvrUjc1jWW_bXuhOUIvJMh26Bresb7uqei6jmpEWfUdbfmgE7TldcsabIEzRgeNXaf5VfHmqLus3Yy9Tm14mNTizQz-Vjkw6s-MNXs1uhvF0-K4kEng1UnAu28rhqhmEzROE_ycXG2FZG36GPF_kjZCyEY2iXzxF3lwq7dpDwmquaBySxNUHiHtXQgeh3PTjKpsCpVNobIpVDJF4p_9PumZ_uWCBLw8ARA0TIMHq02445KlRC3zHJsjF1LKjujvuvtX5efHBxbi6vGsmKkMZeYHsd3gfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904360890</pqid></control><display><type>article</type><title>Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hebrard, Maxime ; Manes, Gaël ; Bocquet, Béatrice ; Meunier, Isabelle ; Coustes-Chazalette, Delphine ; Hérald, Emilie ; Sénéchal, Audrey ; Bolland-Augé, Anne ; Zelenika, Diana ; Hamel, Christian P</creator><creatorcontrib>Hebrard, Maxime ; Manes, Gaël ; Bocquet, Béatrice ; Meunier, Isabelle ; Coustes-Chazalette, Delphine ; Hérald, Emilie ; Sénéchal, Audrey ; Bolland-Augé, Anne ; Zelenika, Diana ; Hamel, Christian P</creatorcontrib><description>Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ∼60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non-consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely tubby-like protein 1 ( TULP1 ) and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for two novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for two novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only two affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization.</description><identifier>ISSN: 1018-4813</identifier><identifier>EISSN: 1476-5438</identifier><identifier>DOI: 10.1038/ejhg.2011.133</identifier><identifier>PMID: 21792230</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>631/1647/1513/1382 ; 631/208/2489/144 ; 631/208/2489/1512 ; 631/208/457 ; Adolescent ; Adult ; Base Sequence ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Child ; Child, Preschool ; Chromosome Mapping ; Classical genetics, quantitative genetics, hybrids ; Congenital diseases ; Cytogenetics ; Diagnosis ; Disease ; Dystrophy ; Exons ; Female ; Fundamental and applied biological sciences. Psychology ; Fundus Oculi ; Gene Expression ; Gene mapping ; General aspects. Genetic counseling ; Genes ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genome-Wide Association Study ; Genomes ; Genomics ; Genotype &amp; phenotype ; Genotypes ; Human ; Human Genetics ; Humans ; Male ; Medical genetics ; Medical sciences ; microchips ; Middle Aged ; Molecular and cellular biology ; Mutation ; Neurosciences ; Ophthalmology ; Patients ; Pedigree ; Phenotype ; Phenotypes ; Photoreceptors ; Polymorphism, Single Nucleotide ; Proteins ; Retina ; Retinitis ; Retinitis pigmentosa ; Retinitis Pigmentosa - genetics ; Retinopathies ; Sequence Analysis, DNA ; Single-nucleotide polymorphism ; Tubby-like protein 1</subject><ispartof>European journal of human genetics : EJHG, 2011-12, Vol.19 (12), p.1256-1263</ispartof><rights>Macmillan Publishers Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Dec 2011</rights><rights>Copyright © 2011 Macmillan Publishers Limited 2011 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d97d6c3ead68a87fb53b1d4d06bbb0cee82db073fcc3e934715e7a3110fcebbc3</citedby><cites>FETCH-LOGICAL-c540t-d97d6c3ead68a87fb53b1d4d06bbb0cee82db073fcc3e934715e7a3110fcebbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230368/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230368/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24766486$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21792230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hebrard, Maxime</creatorcontrib><creatorcontrib>Manes, Gaël</creatorcontrib><creatorcontrib>Bocquet, Béatrice</creatorcontrib><creatorcontrib>Meunier, Isabelle</creatorcontrib><creatorcontrib>Coustes-Chazalette, Delphine</creatorcontrib><creatorcontrib>Hérald, Emilie</creatorcontrib><creatorcontrib>Sénéchal, Audrey</creatorcontrib><creatorcontrib>Bolland-Augé, Anne</creatorcontrib><creatorcontrib>Zelenika, Diana</creatorcontrib><creatorcontrib>Hamel, Christian P</creatorcontrib><title>Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families</title><title>European journal of human genetics : EJHG</title><addtitle>Eur J Hum Genet</addtitle><addtitle>Eur J Hum Genet</addtitle><description>Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ∼60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non-consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely tubby-like protein 1 ( TULP1 ) and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for two novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for two novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only two affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization.</description><subject>631/1647/1513/1382</subject><subject>631/208/2489/144</subject><subject>631/208/2489/1512</subject><subject>631/208/457</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromosome Mapping</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Congenital diseases</subject><subject>Cytogenetics</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Dystrophy</subject><subject>Exons</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundus Oculi</subject><subject>Gene Expression</subject><subject>Gene mapping</subject><subject>General aspects. Genetic counseling</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Human</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>microchips</subject><subject>Middle Aged</subject><subject>Molecular and cellular biology</subject><subject>Mutation</subject><subject>Neurosciences</subject><subject>Ophthalmology</subject><subject>Patients</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Photoreceptors</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retinitis</subject><subject>Retinitis pigmentosa</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinopathies</subject><subject>Sequence Analysis, DNA</subject><subject>Single-nucleotide polymorphism</subject><subject>Tubby-like protein 1</subject><issn>1018-4813</issn><issn>1476-5438</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl2L1DAUhoso7rp66a1EQbzqmDRtmrkRZPALFrzR63CannYytElN0oX9Gf5jE2ecVUG8ygnnyXs-8hbFU0Y3jHL5Gg_7cVNRxjaM83vFJatbUTY1l_dTTJksa8n4RfEohAOlKdmyh8VFxdptVXF6WXzfubkz1tiRjGiRzLAs-QK2J8serYu3CxIIAUOY0UYyOE8GCJHMa4RonCWDsX1-Yiyxzpba2QB2XI1FtwYCa3TBzTARjzqJmBtMUUwlowlkMWNWdQGS6Gwmg-Fx8WCAKeCT03lVfH3_7svuY3n9-cOn3dvrUjc1jWW_bXuhOUIvJMh26Bresb7uqei6jmpEWfUdbfmgE7TldcsabIEzRgeNXaf5VfHmqLus3Yy9Tm14mNTizQz-Vjkw6s-MNXs1uhvF0-K4kEng1UnAu28rhqhmEzROE_ycXG2FZG36GPF_kjZCyEY2iXzxF3lwq7dpDwmquaBySxNUHiHtXQgeh3PTjKpsCpVNobIpVDJF4p_9PumZ_uWCBLw8ARA0TIMHq02445KlRC3zHJsjF1LKjujvuvtX5efHBxbi6vGsmKkMZeYHsd3gfA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Hebrard, Maxime</creator><creator>Manes, Gaël</creator><creator>Bocquet, Béatrice</creator><creator>Meunier, Isabelle</creator><creator>Coustes-Chazalette, Delphine</creator><creator>Hérald, Emilie</creator><creator>Sénéchal, Audrey</creator><creator>Bolland-Augé, Anne</creator><creator>Zelenika, Diana</creator><creator>Hamel, Christian P</creator><general>Springer International Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families</title><author>Hebrard, Maxime ; Manes, Gaël ; Bocquet, Béatrice ; Meunier, Isabelle ; Coustes-Chazalette, Delphine ; Hérald, Emilie ; Sénéchal, Audrey ; Bolland-Augé, Anne ; Zelenika, Diana ; Hamel, Christian P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d97d6c3ead68a87fb53b1d4d06bbb0cee82db073fcc3e934715e7a3110fcebbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/1647/1513/1382</topic><topic>631/208/2489/144</topic><topic>631/208/2489/1512</topic><topic>631/208/457</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromosome Mapping</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Congenital diseases</topic><topic>Cytogenetics</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Dystrophy</topic><topic>Exons</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundus Oculi</topic><topic>Gene Expression</topic><topic>Gene mapping</topic><topic>General aspects. Genetic counseling</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Human</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>microchips</topic><topic>Middle Aged</topic><topic>Molecular and cellular biology</topic><topic>Mutation</topic><topic>Neurosciences</topic><topic>Ophthalmology</topic><topic>Patients</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Photoreceptors</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retinitis</topic><topic>Retinitis pigmentosa</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinopathies</topic><topic>Sequence Analysis, DNA</topic><topic>Single-nucleotide polymorphism</topic><topic>Tubby-like protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hebrard, Maxime</creatorcontrib><creatorcontrib>Manes, Gaël</creatorcontrib><creatorcontrib>Bocquet, Béatrice</creatorcontrib><creatorcontrib>Meunier, Isabelle</creatorcontrib><creatorcontrib>Coustes-Chazalette, Delphine</creatorcontrib><creatorcontrib>Hérald, Emilie</creatorcontrib><creatorcontrib>Sénéchal, Audrey</creatorcontrib><creatorcontrib>Bolland-Augé, Anne</creatorcontrib><creatorcontrib>Zelenika, Diana</creatorcontrib><creatorcontrib>Hamel, Christian P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of human genetics : EJHG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hebrard, Maxime</au><au>Manes, Gaël</au><au>Bocquet, Béatrice</au><au>Meunier, Isabelle</au><au>Coustes-Chazalette, Delphine</au><au>Hérald, Emilie</au><au>Sénéchal, Audrey</au><au>Bolland-Augé, Anne</au><au>Zelenika, Diana</au><au>Hamel, Christian P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families</atitle><jtitle>European journal of human genetics : EJHG</jtitle><stitle>Eur J Hum Genet</stitle><addtitle>Eur J Hum Genet</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>19</volume><issue>12</issue><spage>1256</spage><epage>1263</epage><pages>1256-1263</pages><issn>1018-4813</issn><eissn>1476-5438</eissn><abstract>Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ∼60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non-consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely tubby-like protein 1 ( TULP1 ) and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for two novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for two novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only two affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21792230</pmid><doi>10.1038/ejhg.2011.133</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1018-4813
ispartof European journal of human genetics : EJHG, 2011-12, Vol.19 (12), p.1256-1263
issn 1018-4813
1476-5438
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3230368
source MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central; EZB Electronic Journals Library
subjects 631/1647/1513/1382
631/208/2489/144
631/208/2489/1512
631/208/457
Adolescent
Adult
Base Sequence
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Child
Child, Preschool
Chromosome Mapping
Classical genetics, quantitative genetics, hybrids
Congenital diseases
Cytogenetics
Diagnosis
Disease
Dystrophy
Exons
Female
Fundamental and applied biological sciences. Psychology
Fundus Oculi
Gene Expression
Gene mapping
General aspects. Genetic counseling
Genes
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genome-Wide Association Study
Genomes
Genomics
Genotype & phenotype
Genotypes
Human
Human Genetics
Humans
Male
Medical genetics
Medical sciences
microchips
Middle Aged
Molecular and cellular biology
Mutation
Neurosciences
Ophthalmology
Patients
Pedigree
Phenotype
Phenotypes
Photoreceptors
Polymorphism, Single Nucleotide
Proteins
Retina
Retinitis
Retinitis pigmentosa
Retinitis Pigmentosa - genetics
Retinopathies
Sequence Analysis, DNA
Single-nucleotide polymorphism
Tubby-like protein 1
title Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20gene%20mapping%20and%20phenotype%20assessment%20for%20fast%20mutation%20finding%20in%20non-consanguineous%20autosomal%20recessive%20retinitis%20pigmentosa%20families&rft.jtitle=European%20journal%20of%20human%20genetics%20:%20EJHG&rft.au=Hebrard,%20Maxime&rft.date=2011-12-01&rft.volume=19&rft.issue=12&rft.spage=1256&rft.epage=1263&rft.pages=1256-1263&rft.issn=1018-4813&rft.eissn=1476-5438&rft_id=info:doi/10.1038/ejhg.2011.133&rft_dat=%3Cproquest_pubme%3E968170116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904360890&rft_id=info:pmid/21792230&rfr_iscdi=true