Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC systems biology 2011-11, Vol.5 (186), p.190-190, Article 190
Hauptverfasser: McDermott, Jason E, Shankaran, Harish, Eisfeld, Amie J, Belisle, Sarah E, Neuman, Gabriele, Li, Chengjun, McWeeney, Shannon, Sabourin, Carol, Kawaoka, Yoshihiro, Katze, Michael G, Waters, Katrina M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 186
container_start_page 190
container_title BMC systems biology
container_volume 5
creator McDermott, Jason E
Shankaran, Harish
Eisfeld, Amie J
Belisle, Sarah E
Neuman, Gabriele
Li, Chengjun
McWeeney, Shannon
Sabourin, Carol
Kawaoka, Yoshihiro
Katze, Michael G
Waters, Katrina M
description Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.
doi_str_mv 10.1186/1752-0509-5-190
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3229612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A274242625</galeid><sourcerecordid>A274242625</sourcerecordid><originalsourceid>FETCH-LOGICAL-b707t-44d06de39b199c80ab7f5f4950ab3da291506feb5419795e281b71468855ae623</originalsourceid><addsrcrecordid>eNqNk0tv1DAUhSMEoqWwZoesskBIpLU9fow3SGXEo1IlJB5ry3FuJq4Se4idEcOWP47DlNEMKg9lEefez-cm58RF8ZjgM0Lm4pxITkvMsSp5SRS-UxzvKnf31kfFgxivMeYzSuX94ohSLBlX7Lj4vgg-wrCGGrUhJjRAXE0VlAJq3bLtNmhlUhuW4J1FZu2MR8433Qj-m0FrN4xxegabXJg6qB37jFjoOmTHLo0DvEB9GLOi8TXqjTVfRsiVGjoUNzFBHx8W9xrTRXh0cz8pPr95_Wnxrrx6__ZycXFVVhLLVDJWY1HDTFVEKTvHppINb5jieTWrDVWEY9FAxRlRUnGgc1JJwsR8zrkBQWcnxcut7mqseqgt-DSYTq8G15tho4Nx-rDjXauXYa2za0qQSeB0K5Cdcjpal8C2NnifP18TQYVgIkOvtlDlwh-mHHZs6PWUlJ6S0lznHLPIs5tXHUL2KybduziZajxkM7XCc8kw_kme_kZeh3Hw2ccMSaKoohP0dAstTQc65xXyZDtJ6guW7aJScPZXikpGGRWUZ-rsFipfNfQumwGNy_UD2f_asD_h-cGGzCT4mpZmjFFffvxwKP4vdl_3fMvaIcQ4QLMLhWA9HadbYniy_8fs-F_nZ_YDy2QX6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907192920</pqid></control><display><type>article</type><title>Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems</title><source>MEDLINE</source><source>BioMedCentral</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>McDermott, Jason E ; Shankaran, Harish ; Eisfeld, Amie J ; Belisle, Sarah E ; Neuman, Gabriele ; Li, Chengjun ; McWeeney, Shannon ; Sabourin, Carol ; Kawaoka, Yoshihiro ; Katze, Michael G ; Waters, Katrina M</creator><creatorcontrib>McDermott, Jason E ; Shankaran, Harish ; Eisfeld, Amie J ; Belisle, Sarah E ; Neuman, Gabriele ; Li, Chengjun ; McWeeney, Shannon ; Sabourin, Carol ; Kawaoka, Yoshihiro ; Katze, Michael G ; Waters, Katrina M ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.</description><identifier>ISSN: 1752-0509</identifier><identifier>EISSN: 1752-0509</identifier><identifier>DOI: 10.1186/1752-0509-5-190</identifier><identifier>PMID: 22074594</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Animals ; Avian influenza ; Avian influenza viruses ; BASIC BIOLOGICAL SCIENCES ; Biological response modifiers ; Cell culture ; Cells (Biology) ; comparative transcriptomics ; Diagnosis ; Disease Resistance - genetics ; Experiments ; Gene expression ; Gene Regulatory Networks ; Health aspects ; Health care ; host response ; Humans ; Infection ; Influenza A Virus, H5N1 Subtype - pathogenicity ; influenza infection ; Influenza, Human - genetics ; Influenza, Human - immunology ; Macaca ; mathematical &amp; computational biology ; MATHEMATICS AND COMPUTING ; Mice ; Models, Immunological ; Mortality ; Multivariate Analysis ; network inference ; Pathogenesis ; Physiological aspects ; Preventive medicine ; Science ; Systems Biology ; Virus diseases ; Viruses</subject><ispartof>BMC systems biology, 2011-11, Vol.5 (186), p.190-190, Article 190</ispartof><rights>COPYRIGHT 2011 BioMed Central Ltd.</rights><rights>2011 McDermott et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2011 McDermott et al; licensee BioMed Central Ltd. 2011 McDermott et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b707t-44d06de39b199c80ab7f5f4950ab3da291506feb5419795e281b71468855ae623</citedby><cites>FETCH-LOGICAL-b707t-44d06de39b199c80ab7f5f4950ab3da291506feb5419795e281b71468855ae623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,24780,27901,27902,53766,53768,75480,75481</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22074594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1626646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Shankaran, Harish</creatorcontrib><creatorcontrib>Eisfeld, Amie J</creatorcontrib><creatorcontrib>Belisle, Sarah E</creatorcontrib><creatorcontrib>Neuman, Gabriele</creatorcontrib><creatorcontrib>Li, Chengjun</creatorcontrib><creatorcontrib>McWeeney, Shannon</creatorcontrib><creatorcontrib>Sabourin, Carol</creatorcontrib><creatorcontrib>Kawaoka, Yoshihiro</creatorcontrib><creatorcontrib>Katze, Michael G</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems</title><title>BMC systems biology</title><addtitle>BMC Syst Biol</addtitle><description>Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Avian influenza</subject><subject>Avian influenza viruses</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological response modifiers</subject><subject>Cell culture</subject><subject>Cells (Biology)</subject><subject>comparative transcriptomics</subject><subject>Diagnosis</subject><subject>Disease Resistance - genetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Health aspects</subject><subject>Health care</subject><subject>host response</subject><subject>Humans</subject><subject>Infection</subject><subject>Influenza A Virus, H5N1 Subtype - pathogenicity</subject><subject>influenza infection</subject><subject>Influenza, Human - genetics</subject><subject>Influenza, Human - immunology</subject><subject>Macaca</subject><subject>mathematical &amp; computational biology</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Mice</subject><subject>Models, Immunological</subject><subject>Mortality</subject><subject>Multivariate Analysis</subject><subject>network inference</subject><subject>Pathogenesis</subject><subject>Physiological aspects</subject><subject>Preventive medicine</subject><subject>Science</subject><subject>Systems Biology</subject><subject>Virus diseases</subject><subject>Viruses</subject><issn>1752-0509</issn><issn>1752-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNk0tv1DAUhSMEoqWwZoesskBIpLU9fow3SGXEo1IlJB5ry3FuJq4Se4idEcOWP47DlNEMKg9lEefez-cm58RF8ZjgM0Lm4pxITkvMsSp5SRS-UxzvKnf31kfFgxivMeYzSuX94ohSLBlX7Lj4vgg-wrCGGrUhJjRAXE0VlAJq3bLtNmhlUhuW4J1FZu2MR8433Qj-m0FrN4xxegabXJg6qB37jFjoOmTHLo0DvEB9GLOi8TXqjTVfRsiVGjoUNzFBHx8W9xrTRXh0cz8pPr95_Wnxrrx6__ZycXFVVhLLVDJWY1HDTFVEKTvHppINb5jieTWrDVWEY9FAxRlRUnGgc1JJwsR8zrkBQWcnxcut7mqseqgt-DSYTq8G15tho4Nx-rDjXauXYa2za0qQSeB0K5Cdcjpal8C2NnifP18TQYVgIkOvtlDlwh-mHHZs6PWUlJ6S0lznHLPIs5tXHUL2KybduziZajxkM7XCc8kw_kme_kZeh3Hw2ccMSaKoohP0dAstTQc65xXyZDtJ6guW7aJScPZXikpGGRWUZ-rsFipfNfQumwGNy_UD2f_asD_h-cGGzCT4mpZmjFFffvxwKP4vdl_3fMvaIcQ4QLMLhWA9HadbYniy_8fs-F_nZ_YDy2QX6w</recordid><startdate>20111111</startdate><enddate>20111111</enddate><creator>McDermott, Jason E</creator><creator>Shankaran, Harish</creator><creator>Eisfeld, Amie J</creator><creator>Belisle, Sarah E</creator><creator>Neuman, Gabriele</creator><creator>Li, Chengjun</creator><creator>McWeeney, Shannon</creator><creator>Sabourin, Carol</creator><creator>Kawaoka, Yoshihiro</creator><creator>Katze, Michael G</creator><creator>Waters, Katrina M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20111111</creationdate><title>Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems</title><author>McDermott, Jason E ; Shankaran, Harish ; Eisfeld, Amie J ; Belisle, Sarah E ; Neuman, Gabriele ; Li, Chengjun ; McWeeney, Shannon ; Sabourin, Carol ; Kawaoka, Yoshihiro ; Katze, Michael G ; Waters, Katrina M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b707t-44d06de39b199c80ab7f5f4950ab3da291506feb5419795e281b71468855ae623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Avian influenza</topic><topic>Avian influenza viruses</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological response modifiers</topic><topic>Cell culture</topic><topic>Cells (Biology)</topic><topic>comparative transcriptomics</topic><topic>Diagnosis</topic><topic>Disease Resistance - genetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Health aspects</topic><topic>Health care</topic><topic>host response</topic><topic>Humans</topic><topic>Infection</topic><topic>Influenza A Virus, H5N1 Subtype - pathogenicity</topic><topic>influenza infection</topic><topic>Influenza, Human - genetics</topic><topic>Influenza, Human - immunology</topic><topic>Macaca</topic><topic>mathematical &amp; computational biology</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Mice</topic><topic>Models, Immunological</topic><topic>Mortality</topic><topic>Multivariate Analysis</topic><topic>network inference</topic><topic>Pathogenesis</topic><topic>Physiological aspects</topic><topic>Preventive medicine</topic><topic>Science</topic><topic>Systems Biology</topic><topic>Virus diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDermott, Jason E</creatorcontrib><creatorcontrib>Shankaran, Harish</creatorcontrib><creatorcontrib>Eisfeld, Amie J</creatorcontrib><creatorcontrib>Belisle, Sarah E</creatorcontrib><creatorcontrib>Neuman, Gabriele</creatorcontrib><creatorcontrib>Li, Chengjun</creatorcontrib><creatorcontrib>McWeeney, Shannon</creatorcontrib><creatorcontrib>Sabourin, Carol</creatorcontrib><creatorcontrib>Kawaoka, Yoshihiro</creatorcontrib><creatorcontrib>Katze, Michael G</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDermott, Jason E</au><au>Shankaran, Harish</au><au>Eisfeld, Amie J</au><au>Belisle, Sarah E</au><au>Neuman, Gabriele</au><au>Li, Chengjun</au><au>McWeeney, Shannon</au><au>Sabourin, Carol</au><au>Kawaoka, Yoshihiro</au><au>Katze, Michael G</au><au>Waters, Katrina M</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems</atitle><jtitle>BMC systems biology</jtitle><addtitle>BMC Syst Biol</addtitle><date>2011-11-11</date><risdate>2011</risdate><volume>5</volume><issue>186</issue><spage>190</spage><epage>190</epage><pages>190-190</pages><artnum>190</artnum><issn>1752-0509</issn><eissn>1752-0509</eissn><abstract>Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>22074594</pmid><doi>10.1186/1752-0509-5-190</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0509
ispartof BMC systems biology, 2011-11, Vol.5 (186), p.190-190, Article 190
issn 1752-0509
1752-0509
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3229612
source MEDLINE; BioMedCentral; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Algorithms
Analysis
Animals
Avian influenza
Avian influenza viruses
BASIC BIOLOGICAL SCIENCES
Biological response modifiers
Cell culture
Cells (Biology)
comparative transcriptomics
Diagnosis
Disease Resistance - genetics
Experiments
Gene expression
Gene Regulatory Networks
Health aspects
Health care
host response
Humans
Infection
Influenza A Virus, H5N1 Subtype - pathogenicity
influenza infection
Influenza, Human - genetics
Influenza, Human - immunology
Macaca
mathematical & computational biology
MATHEMATICS AND COMPUTING
Mice
Models, Immunological
Mortality
Multivariate Analysis
network inference
Pathogenesis
Physiological aspects
Preventive medicine
Science
Systems Biology
Virus diseases
Viruses
title Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20host%20response%20to%20highly%20pathogenic%20avian%20influenza%20virus%20infection%20in%20human%20cell%20culture,%20mouse%20and%20macaque%20model%20systems&rft.jtitle=BMC%20systems%20biology&rft.au=McDermott,%20Jason%20E&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2011-11-11&rft.volume=5&rft.issue=186&rft.spage=190&rft.epage=190&rft.pages=190-190&rft.artnum=190&rft.issn=1752-0509&rft.eissn=1752-0509&rft_id=info:doi/10.1186/1752-0509-5-190&rft_dat=%3Cgale_pubme%3EA274242625%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907192920&rft_id=info:pmid/22074594&rft_galeid=A274242625&rfr_iscdi=true