Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins

Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2011-12, Vol.317 (20), p.2981-2994
Hauptverfasser: Krilov, Lada, Nguyen, Amy, Miyazaki, Teruo, Unson, Cecilia G., Williams, Russell, Lee, Norman H., Ceryak, Susan, Bouscarel, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2994
container_issue 20
container_start_page 2981
container_title Experimental cell research
container_volume 317
creator Krilov, Lada
Nguyen, Amy
Miyazaki, Teruo
Unson, Cecilia G.
Williams, Russell
Lee, Norman H.
Ceryak, Susan
Bouscarel, Bernard
description Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25–40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.
doi_str_mv 10.1016/j.yexcr.2011.10.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3228254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482711003958</els_id><sourcerecordid>904013606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-439c015bf1004174afcbb159d5f6039999bfd290240832476afafadb1d7499b23</originalsourceid><addsrcrecordid>eNp9UdtuEzEQtRCoTS9fgIT8xks3zHi9m10kkKoABbVVqyg8W17bGxxt7GDvVqR_BR-Sb8JpSgUveB4snXPmzGgOIS8RxghYvlmON-aHCmMGiAkZA-AzMkKoIWOcsedklBCe8YpNDslRjEsAqCosD8ghY4lCrEZk_mGQHb322lDf0kU3KLnwjgajzLr3gVrXm-BkZ-9lb717S2e-e5DeXk63P8_oxewyUuk03f7KZAgm9tbFE_KilV00p4__Mfn66eN8-jm7urn4Mj2_yhQvqj7jea0Ai6ZFAI4TLlvVNFjUumhLyOv0mlazGhiHKmd8Uso2lW5QT3jiWH5M3u9910OzMloZ1wfZiXWwKxk2wksr_mWc_SYW_k7kjFWs4Mng9aNB8N-HtLxY2ahM10ln_BBFDRwwL6FMynyvVMHHGEz7NAVB7OIQS_EQh9jFsQPThVPXq78XfOr5c_8keLcXmHSmO2uCiMoap4y2KYJeaG__O-A3Lg-eGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>904013606</pqid></control><display><type>article</type><title>Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Krilov, Lada ; Nguyen, Amy ; Miyazaki, Teruo ; Unson, Cecilia G. ; Williams, Russell ; Lee, Norman H. ; Ceryak, Susan ; Bouscarel, Bernard</creator><creatorcontrib>Krilov, Lada ; Nguyen, Amy ; Miyazaki, Teruo ; Unson, Cecilia G. ; Williams, Russell ; Lee, Norman H. ; Ceryak, Susan ; Bouscarel, Bernard</creatorcontrib><description>Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25–40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2011.10.001</identifier><identifier>PMID: 22001118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arrestins - metabolism ; beta-Arrestins ; Caveolins - metabolism ; Cell Membrane - metabolism ; Cells, Cultured ; Clathrin - metabolism ; Cricetinae ; Endocytosis - physiology ; G-Protein-Coupled Receptor Kinases - metabolism ; Glucagon - metabolism ; Glucagon receptor ; GRK ; HEK293 Cells ; Hepatocytes - metabolism ; Humans ; Male ; PKCα ; Protein Kinase C-alpha - metabolism ; Protein Transport ; Receptors, Glucagon - metabolism ; β-Arrestin</subject><ispartof>Experimental cell research, 2011-12, Vol.317 (20), p.2981-2994</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-439c015bf1004174afcbb159d5f6039999bfd290240832476afafadb1d7499b23</citedby><cites>FETCH-LOGICAL-c458t-439c015bf1004174afcbb159d5f6039999bfd290240832476afafadb1d7499b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482711003958$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22001118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krilov, Lada</creatorcontrib><creatorcontrib>Nguyen, Amy</creatorcontrib><creatorcontrib>Miyazaki, Teruo</creatorcontrib><creatorcontrib>Unson, Cecilia G.</creatorcontrib><creatorcontrib>Williams, Russell</creatorcontrib><creatorcontrib>Lee, Norman H.</creatorcontrib><creatorcontrib>Ceryak, Susan</creatorcontrib><creatorcontrib>Bouscarel, Bernard</creatorcontrib><title>Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25–40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.</description><subject>Animals</subject><subject>Arrestins - metabolism</subject><subject>beta-Arrestins</subject><subject>Caveolins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Clathrin - metabolism</subject><subject>Cricetinae</subject><subject>Endocytosis - physiology</subject><subject>G-Protein-Coupled Receptor Kinases - metabolism</subject><subject>Glucagon - metabolism</subject><subject>Glucagon receptor</subject><subject>GRK</subject><subject>HEK293 Cells</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>PKCα</subject><subject>Protein Kinase C-alpha - metabolism</subject><subject>Protein Transport</subject><subject>Receptors, Glucagon - metabolism</subject><subject>β-Arrestin</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UdtuEzEQtRCoTS9fgIT8xks3zHi9m10kkKoABbVVqyg8W17bGxxt7GDvVqR_BR-Sb8JpSgUveB4snXPmzGgOIS8RxghYvlmON-aHCmMGiAkZA-AzMkKoIWOcsedklBCe8YpNDslRjEsAqCosD8ghY4lCrEZk_mGQHb322lDf0kU3KLnwjgajzLr3gVrXm-BkZ-9lb717S2e-e5DeXk63P8_oxewyUuk03f7KZAgm9tbFE_KilV00p4__Mfn66eN8-jm7urn4Mj2_yhQvqj7jea0Ai6ZFAI4TLlvVNFjUumhLyOv0mlazGhiHKmd8Uso2lW5QT3jiWH5M3u9910OzMloZ1wfZiXWwKxk2wksr_mWc_SYW_k7kjFWs4Mng9aNB8N-HtLxY2ahM10ln_BBFDRwwL6FMynyvVMHHGEz7NAVB7OIQS_EQh9jFsQPThVPXq78XfOr5c_8keLcXmHSmO2uCiMoap4y2KYJeaG__O-A3Lg-eGw</recordid><startdate>20111210</startdate><enddate>20111210</enddate><creator>Krilov, Lada</creator><creator>Nguyen, Amy</creator><creator>Miyazaki, Teruo</creator><creator>Unson, Cecilia G.</creator><creator>Williams, Russell</creator><creator>Lee, Norman H.</creator><creator>Ceryak, Susan</creator><creator>Bouscarel, Bernard</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111210</creationdate><title>Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins</title><author>Krilov, Lada ; Nguyen, Amy ; Miyazaki, Teruo ; Unson, Cecilia G. ; Williams, Russell ; Lee, Norman H. ; Ceryak, Susan ; Bouscarel, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-439c015bf1004174afcbb159d5f6039999bfd290240832476afafadb1d7499b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Arrestins - metabolism</topic><topic>beta-Arrestins</topic><topic>Caveolins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Clathrin - metabolism</topic><topic>Cricetinae</topic><topic>Endocytosis - physiology</topic><topic>G-Protein-Coupled Receptor Kinases - metabolism</topic><topic>Glucagon - metabolism</topic><topic>Glucagon receptor</topic><topic>GRK</topic><topic>HEK293 Cells</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>PKCα</topic><topic>Protein Kinase C-alpha - metabolism</topic><topic>Protein Transport</topic><topic>Receptors, Glucagon - metabolism</topic><topic>β-Arrestin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krilov, Lada</creatorcontrib><creatorcontrib>Nguyen, Amy</creatorcontrib><creatorcontrib>Miyazaki, Teruo</creatorcontrib><creatorcontrib>Unson, Cecilia G.</creatorcontrib><creatorcontrib>Williams, Russell</creatorcontrib><creatorcontrib>Lee, Norman H.</creatorcontrib><creatorcontrib>Ceryak, Susan</creatorcontrib><creatorcontrib>Bouscarel, Bernard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krilov, Lada</au><au>Nguyen, Amy</au><au>Miyazaki, Teruo</au><au>Unson, Cecilia G.</au><au>Williams, Russell</au><au>Lee, Norman H.</au><au>Ceryak, Susan</au><au>Bouscarel, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2011-12-10</date><risdate>2011</risdate><volume>317</volume><issue>20</issue><spage>2981</spage><epage>2994</epage><pages>2981-2994</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25–40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22001118</pmid><doi>10.1016/j.yexcr.2011.10.001</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2011-12, Vol.317 (20), p.2981-2994
issn 0014-4827
1090-2422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3228254
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Arrestins - metabolism
beta-Arrestins
Caveolins - metabolism
Cell Membrane - metabolism
Cells, Cultured
Clathrin - metabolism
Cricetinae
Endocytosis - physiology
G-Protein-Coupled Receptor Kinases - metabolism
Glucagon - metabolism
Glucagon receptor
GRK
HEK293 Cells
Hepatocytes - metabolism
Humans
Male
PKCα
Protein Kinase C-alpha - metabolism
Protein Transport
Receptors, Glucagon - metabolism
β-Arrestin
title Dual Mode of glucagon receptor internalization: Role of PKCα, GRKs and β-arrestins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Mode%20of%20glucagon%20receptor%20internalization:%20Role%20of%20PKC%CE%B1,%20GRKs%20and%20%CE%B2-arrestins&rft.jtitle=Experimental%20cell%20research&rft.au=Krilov,%20Lada&rft.date=2011-12-10&rft.volume=317&rft.issue=20&rft.spage=2981&rft.epage=2994&rft.pages=2981-2994&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2011.10.001&rft_dat=%3Cproquest_pubme%3E904013606%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=904013606&rft_id=info:pmid/22001118&rft_els_id=S0014482711003958&rfr_iscdi=true