Activation of human vascular cells decreases their expression of transforming growth factor-beta
Abstract Objective Despite pro-fibrotic effects, transforming growth factor (TGF)-β prevents arteriosclerosis by suppressing effector leukocytes and promoting smooth muscle differentiation. However, previous observations of increased TGF-β expression in arteriosclerotic plaques are not consistent wi...
Gespeichert in:
Veröffentlicht in: | Atherosclerosis 2011-12, Vol.219 (2), p.417-424 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 2 |
container_start_page | 417 |
container_title | Atherosclerosis |
container_volume | 219 |
creator | Lebastchi, Amir H Qin, Lingfeng Khan, Salman F Zhou, Jing Geirsson, Arnar Kim, Richard W Li, Wei Tellides, George |
description | Abstract Objective Despite pro-fibrotic effects, transforming growth factor (TGF)-β prevents arteriosclerosis by suppressing effector leukocytes and promoting smooth muscle differentiation. However, previous observations of increased TGF-β expression in arteriosclerotic plaques are not consistent with that of an effective protective factor. We investigated the expression, regulation, and responses of TGF-β in human arterial tissues and cells. Methods and results The expression of TGF-β by intrinsic vascular cells was lower in arteriosclerotic than non-diseased coronary arteries. Activation of resident and infiltrating leukocytes did not elicit TGF-β production from coronary artery segments in organ culture. Instead, the basal expression of TGF-β by coronary arteries decreased after vessel procurement and ex vivo culture. Activation of cultured smooth muscle cells and endothelial cells with phorbol ester and ionophore also decreased TGF-β expression. Isolated cell types representing those found in the artery wall were all capable of signaling in response to TGF-β, however production of the cytoprotective molecule, interleukin-11 was cell type-dependent and restricted to smooth muscle cells and fibroblasts. Interleukin-11 reduced smooth muscle cell apoptosis to T cell effectors. Conclusions Inflammation and cellular activation diminish the basal expression of TGF-β by quiescent human vascular cells. Induction of interleukin-11 may contribute to the anti-arteriosclerotic actions of TGF-β. |
doi_str_mv | 10.1016/j.atherosclerosis.2011.07.121 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3226933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021915011007428</els_id><sourcerecordid>S0021915011007428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-6c90e17cc146ce04e2ddaeba2fff7f45ce17324ba7e1d48c4831166469ad4dd93</originalsourceid><addsrcrecordid>eNqNkkFvEzEQhS0EoiHwF2AvPe7i8Trr3QOVqgoKUiUOpWfjjMeJw2Yd2ZtA_z1eJUTQExf7MO89j78Zxi6BV8Cheb-pzLimGBL20-lTJThAxVUFAp6xGbSqK0G28jmbcS6g7GDBL9irlDacc6mgfckuBLRNtnUz9v0aR38wow9DEVyx3m_NUBxMwn1vYoHU96mwhJFMolTkl30s6NcuUkonyxjNkFyIWz-silUMP8d14QyOIZZLGs1r9sKZPtGb0z1nD58-frv5XN59vf1yc31XYsPVWDbYcQKFCLJB4pKEtYaWRjjnlJMLzMVayKVRBFa2KNsaoGlk0xkrre3qObs65u72yy1ZpCE31utd9FsTH3UwXv9bGfxar8JB10I0XV3ngA_HAMxYUyR39gLXE3q90U_Q6wm95kpn9Nn_9u8Gzu4_rLPg8iTIeE3vMjfMGWfdQrSdyv-as3dHnTNBm1XMmof7nLCY5tfW9aS4PSooAz14ijqhpwHJ-kg4ahv8fzd99SQJez_43N4PeqS0Cfs45Klp0Eloru-njZoWCoBzJUVb_wa3E85V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activation of human vascular cells decreases their expression of transforming growth factor-beta</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lebastchi, Amir H ; Qin, Lingfeng ; Khan, Salman F ; Zhou, Jing ; Geirsson, Arnar ; Kim, Richard W ; Li, Wei ; Tellides, George</creator><creatorcontrib>Lebastchi, Amir H ; Qin, Lingfeng ; Khan, Salman F ; Zhou, Jing ; Geirsson, Arnar ; Kim, Richard W ; Li, Wei ; Tellides, George</creatorcontrib><description>Abstract Objective Despite pro-fibrotic effects, transforming growth factor (TGF)-β prevents arteriosclerosis by suppressing effector leukocytes and promoting smooth muscle differentiation. However, previous observations of increased TGF-β expression in arteriosclerotic plaques are not consistent with that of an effective protective factor. We investigated the expression, regulation, and responses of TGF-β in human arterial tissues and cells. Methods and results The expression of TGF-β by intrinsic vascular cells was lower in arteriosclerotic than non-diseased coronary arteries. Activation of resident and infiltrating leukocytes did not elicit TGF-β production from coronary artery segments in organ culture. Instead, the basal expression of TGF-β by coronary arteries decreased after vessel procurement and ex vivo culture. Activation of cultured smooth muscle cells and endothelial cells with phorbol ester and ionophore also decreased TGF-β expression. Isolated cell types representing those found in the artery wall were all capable of signaling in response to TGF-β, however production of the cytoprotective molecule, interleukin-11 was cell type-dependent and restricted to smooth muscle cells and fibroblasts. Interleukin-11 reduced smooth muscle cell apoptosis to T cell effectors. Conclusions Inflammation and cellular activation diminish the basal expression of TGF-β by quiescent human vascular cells. Induction of interleukin-11 may contribute to the anti-arteriosclerotic actions of TGF-β.</description><identifier>ISSN: 0021-9150</identifier><identifier>EISSN: 1879-1484</identifier><identifier>DOI: 10.1016/j.atherosclerosis.2011.07.121</identifier><identifier>PMID: 21862019</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ireland Ltd</publisher><subject>apoptosis ; Apoptosis - drug effects ; Arteriosclerosis ; atherosclerosis ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Calcium Ionophores - pharmacology ; Cardiology. Vascular system ; Cardiovascular ; Case-Control Studies ; Cells, Cultured ; Coronary Artery Disease - immunology ; Coronary Artery Disease - metabolism ; Coronary Artery Disease - pathology ; Coronary Artery Disease - prevention & control ; coronary vessels ; Coronary Vessels - drug effects ; Coronary Vessels - metabolism ; Down-Regulation ; endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - immunology ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; fibroblasts ; Human ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; inflammation ; interleukin-11 ; Interleukin-11 - metabolism ; Ionomycin - pharmacology ; leukocytes ; Leukocytes - drug effects ; Leukocytes - immunology ; Medical sciences ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - immunology ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; myocytes ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - immunology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; organ culture ; Organ Culture Techniques ; Recombinant Proteins - metabolism ; Signal Transduction - drug effects ; smooth muscle ; Smooth muscle cells ; Tetradecanoylphorbol Acetate - pharmacology ; Time Factors ; transforming growth factor beta ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-β</subject><ispartof>Atherosclerosis, 2011-12, Vol.219 (2), p.417-424</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier Ireland Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-6c90e17cc146ce04e2ddaeba2fff7f45ce17324ba7e1d48c4831166469ad4dd93</citedby><cites>FETCH-LOGICAL-c607t-6c90e17cc146ce04e2ddaeba2fff7f45ce17324ba7e1d48c4831166469ad4dd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021915011007428$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25289748$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21862019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebastchi, Amir H</creatorcontrib><creatorcontrib>Qin, Lingfeng</creatorcontrib><creatorcontrib>Khan, Salman F</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Geirsson, Arnar</creatorcontrib><creatorcontrib>Kim, Richard W</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Tellides, George</creatorcontrib><title>Activation of human vascular cells decreases their expression of transforming growth factor-beta</title><title>Atherosclerosis</title><addtitle>Atherosclerosis</addtitle><description>Abstract Objective Despite pro-fibrotic effects, transforming growth factor (TGF)-β prevents arteriosclerosis by suppressing effector leukocytes and promoting smooth muscle differentiation. However, previous observations of increased TGF-β expression in arteriosclerotic plaques are not consistent with that of an effective protective factor. We investigated the expression, regulation, and responses of TGF-β in human arterial tissues and cells. Methods and results The expression of TGF-β by intrinsic vascular cells was lower in arteriosclerotic than non-diseased coronary arteries. Activation of resident and infiltrating leukocytes did not elicit TGF-β production from coronary artery segments in organ culture. Instead, the basal expression of TGF-β by coronary arteries decreased after vessel procurement and ex vivo culture. Activation of cultured smooth muscle cells and endothelial cells with phorbol ester and ionophore also decreased TGF-β expression. Isolated cell types representing those found in the artery wall were all capable of signaling in response to TGF-β, however production of the cytoprotective molecule, interleukin-11 was cell type-dependent and restricted to smooth muscle cells and fibroblasts. Interleukin-11 reduced smooth muscle cell apoptosis to T cell effectors. Conclusions Inflammation and cellular activation diminish the basal expression of TGF-β by quiescent human vascular cells. Induction of interleukin-11 may contribute to the anti-arteriosclerotic actions of TGF-β.</description><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Arteriosclerosis</subject><subject>atherosclerosis</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Calcium Ionophores - pharmacology</subject><subject>Cardiology. Vascular system</subject><subject>Cardiovascular</subject><subject>Case-Control Studies</subject><subject>Cells, Cultured</subject><subject>Coronary Artery Disease - immunology</subject><subject>Coronary Artery Disease - metabolism</subject><subject>Coronary Artery Disease - pathology</subject><subject>Coronary Artery Disease - prevention & control</subject><subject>coronary vessels</subject><subject>Coronary Vessels - drug effects</subject><subject>Coronary Vessels - metabolism</subject><subject>Down-Regulation</subject><subject>endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - immunology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>fibroblasts</subject><subject>Human</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>inflammation</subject><subject>interleukin-11</subject><subject>Interleukin-11 - metabolism</subject><subject>Ionomycin - pharmacology</subject><subject>leukocytes</subject><subject>Leukocytes - drug effects</subject><subject>Leukocytes - immunology</subject><subject>Medical sciences</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - immunology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>myocytes</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - immunology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>organ culture</subject><subject>Organ Culture Techniques</subject><subject>Recombinant Proteins - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>smooth muscle</subject><subject>Smooth muscle cells</subject><subject>Tetradecanoylphorbol Acetate - pharmacology</subject><subject>Time Factors</subject><subject>transforming growth factor beta</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-β</subject><issn>0021-9150</issn><issn>1879-1484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFvEzEQhS0EoiHwF2AvPe7i8Trr3QOVqgoKUiUOpWfjjMeJw2Yd2ZtA_z1eJUTQExf7MO89j78Zxi6BV8Cheb-pzLimGBL20-lTJThAxVUFAp6xGbSqK0G28jmbcS6g7GDBL9irlDacc6mgfckuBLRNtnUz9v0aR38wow9DEVyx3m_NUBxMwn1vYoHU96mwhJFMolTkl30s6NcuUkonyxjNkFyIWz-silUMP8d14QyOIZZLGs1r9sKZPtGb0z1nD58-frv5XN59vf1yc31XYsPVWDbYcQKFCLJB4pKEtYaWRjjnlJMLzMVayKVRBFa2KNsaoGlk0xkrre3qObs65u72yy1ZpCE31utd9FsTH3UwXv9bGfxar8JB10I0XV3ngA_HAMxYUyR39gLXE3q90U_Q6wm95kpn9Nn_9u8Gzu4_rLPg8iTIeE3vMjfMGWfdQrSdyv-as3dHnTNBm1XMmof7nLCY5tfW9aS4PSooAz14ijqhpwHJ-kg4ahv8fzd99SQJez_43N4PeqS0Cfs45Klp0Eloru-njZoWCoBzJUVb_wa3E85V</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lebastchi, Amir H</creator><creator>Qin, Lingfeng</creator><creator>Khan, Salman F</creator><creator>Zhou, Jing</creator><creator>Geirsson, Arnar</creator><creator>Kim, Richard W</creator><creator>Li, Wei</creator><creator>Tellides, George</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Activation of human vascular cells decreases their expression of transforming growth factor-beta</title><author>Lebastchi, Amir H ; Qin, Lingfeng ; Khan, Salman F ; Zhou, Jing ; Geirsson, Arnar ; Kim, Richard W ; Li, Wei ; Tellides, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-6c90e17cc146ce04e2ddaeba2fff7f45ce17324ba7e1d48c4831166469ad4dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Arteriosclerosis</topic><topic>atherosclerosis</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Calcium Ionophores - pharmacology</topic><topic>Cardiology. Vascular system</topic><topic>Cardiovascular</topic><topic>Case-Control Studies</topic><topic>Cells, Cultured</topic><topic>Coronary Artery Disease - immunology</topic><topic>Coronary Artery Disease - metabolism</topic><topic>Coronary Artery Disease - pathology</topic><topic>Coronary Artery Disease - prevention & control</topic><topic>coronary vessels</topic><topic>Coronary Vessels - drug effects</topic><topic>Coronary Vessels - metabolism</topic><topic>Down-Regulation</topic><topic>endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - immunology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>fibroblasts</topic><topic>Human</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>inflammation</topic><topic>interleukin-11</topic><topic>Interleukin-11 - metabolism</topic><topic>Ionomycin - pharmacology</topic><topic>leukocytes</topic><topic>Leukocytes - drug effects</topic><topic>Leukocytes - immunology</topic><topic>Medical sciences</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - immunology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>myocytes</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - immunology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>organ culture</topic><topic>Organ Culture Techniques</topic><topic>Recombinant Proteins - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>smooth muscle</topic><topic>Smooth muscle cells</topic><topic>Tetradecanoylphorbol Acetate - pharmacology</topic><topic>Time Factors</topic><topic>transforming growth factor beta</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-β</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebastchi, Amir H</creatorcontrib><creatorcontrib>Qin, Lingfeng</creatorcontrib><creatorcontrib>Khan, Salman F</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Geirsson, Arnar</creatorcontrib><creatorcontrib>Kim, Richard W</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Tellides, George</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Atherosclerosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebastchi, Amir H</au><au>Qin, Lingfeng</au><au>Khan, Salman F</au><au>Zhou, Jing</au><au>Geirsson, Arnar</au><au>Kim, Richard W</au><au>Li, Wei</au><au>Tellides, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of human vascular cells decreases their expression of transforming growth factor-beta</atitle><jtitle>Atherosclerosis</jtitle><addtitle>Atherosclerosis</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>219</volume><issue>2</issue><spage>417</spage><epage>424</epage><pages>417-424</pages><issn>0021-9150</issn><eissn>1879-1484</eissn><abstract>Abstract Objective Despite pro-fibrotic effects, transforming growth factor (TGF)-β prevents arteriosclerosis by suppressing effector leukocytes and promoting smooth muscle differentiation. However, previous observations of increased TGF-β expression in arteriosclerotic plaques are not consistent with that of an effective protective factor. We investigated the expression, regulation, and responses of TGF-β in human arterial tissues and cells. Methods and results The expression of TGF-β by intrinsic vascular cells was lower in arteriosclerotic than non-diseased coronary arteries. Activation of resident and infiltrating leukocytes did not elicit TGF-β production from coronary artery segments in organ culture. Instead, the basal expression of TGF-β by coronary arteries decreased after vessel procurement and ex vivo culture. Activation of cultured smooth muscle cells and endothelial cells with phorbol ester and ionophore also decreased TGF-β expression. Isolated cell types representing those found in the artery wall were all capable of signaling in response to TGF-β, however production of the cytoprotective molecule, interleukin-11 was cell type-dependent and restricted to smooth muscle cells and fibroblasts. Interleukin-11 reduced smooth muscle cell apoptosis to T cell effectors. Conclusions Inflammation and cellular activation diminish the basal expression of TGF-β by quiescent human vascular cells. Induction of interleukin-11 may contribute to the anti-arteriosclerotic actions of TGF-β.</abstract><cop>Amsterdam</cop><pub>Elsevier Ireland Ltd</pub><pmid>21862019</pmid><doi>10.1016/j.atherosclerosis.2011.07.121</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9150 |
ispartof | Atherosclerosis, 2011-12, Vol.219 (2), p.417-424 |
issn | 0021-9150 1879-1484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3226933 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | apoptosis Apoptosis - drug effects Arteriosclerosis atherosclerosis Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Calcium Ionophores - pharmacology Cardiology. Vascular system Cardiovascular Case-Control Studies Cells, Cultured Coronary Artery Disease - immunology Coronary Artery Disease - metabolism Coronary Artery Disease - pathology Coronary Artery Disease - prevention & control coronary vessels Coronary Vessels - drug effects Coronary Vessels - metabolism Down-Regulation endothelial cells Endothelial Cells - drug effects Endothelial Cells - immunology Endothelial Cells - metabolism Endothelial Cells - pathology fibroblasts Human Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - metabolism Humans inflammation interleukin-11 Interleukin-11 - metabolism Ionomycin - pharmacology leukocytes Leukocytes - drug effects Leukocytes - immunology Medical sciences Muscle, Smooth, Vascular - drug effects Muscle, Smooth, Vascular - immunology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology myocytes Myocytes, Smooth Muscle - drug effects Myocytes, Smooth Muscle - immunology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology organ culture Organ Culture Techniques Recombinant Proteins - metabolism Signal Transduction - drug effects smooth muscle Smooth muscle cells Tetradecanoylphorbol Acetate - pharmacology Time Factors transforming growth factor beta Transforming Growth Factor beta1 - metabolism Transforming growth factor-β |
title | Activation of human vascular cells decreases their expression of transforming growth factor-beta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20human%20vascular%20cells%20decreases%20their%20expression%20of%20transforming%20growth%20factor-beta&rft.jtitle=Atherosclerosis&rft.au=Lebastchi,%20Amir%20H&rft.date=2011-12-01&rft.volume=219&rft.issue=2&rft.spage=417&rft.epage=424&rft.pages=417-424&rft.issn=0021-9150&rft.eissn=1879-1484&rft_id=info:doi/10.1016/j.atherosclerosis.2011.07.121&rft_dat=%3Celsevier_pubme%3ES0021915011007428%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21862019&rft_els_id=S0021915011007428&rfr_iscdi=true |