Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism
Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations...
Gespeichert in:
Veröffentlicht in: | Journal of neurology 2011-12, Vol.258 (12), p.2230-2239 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2239 |
---|---|
container_issue | 12 |
container_start_page | 2230 |
container_title | Journal of neurology |
container_volume | 258 |
creator | van den Bogaard, Simon J. A. Dumas, Eve M. Teeuwisse, Wouter M. Kan, Hermien E. Webb, Andrew Roos, Raymund A. C. van der Grond, Jeroen |
description | Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (
p
= 0.009) and lower creatine concentration (
p
= 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (
p
= 0.024), lower creatine concentration (
p
= 0.027), and lower glutamate (
p
= 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes. |
doi_str_mv | 10.1007/s00415-011-6099-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907033030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-d752d6ea84ef575ec52d77f0c5164e7c1dc66046357507ff42efb012c86b90b3</originalsourceid><addsrcrecordid>eNqFks2KFDEUhYMoztj6AG4kCOKq9Oa3qjaCDKMjDLjpfUinbrUZqpIyqW7snSvfwdfzSUzR7YwKIlmEy_lycpN7CHnK4BUDqF9nAMlUBYxVGtq2UvfIOZOCV0yq9j45ByGhUkLJM_Io5xsAaIrwkJxxppmUgp2Tb5dfpiEmO8d0oHW1xjxYOtptwNk7mjDHYINDmid0c4rZxelAfaBXuzD7sJ1j-PH1e6adz2gz0inFve8wL8je7yPFpVwM-pioHyfrE3YUA6btgY44200cfB4fkwe9HTI-Oe0rsn53ub64qq4_vv9w8fa6ckrAXHW14p1G20jsVa3QlbKue3CKaYm1Y53TGqQWRYS67yXHfgOMu0ZvWtiIFXlztJ12mxE7h2FOdjBT8qNNBxOtN38qwX8y27g3gnOluSoGL08GKX7eYZ7N6LPDYbAB4y6bluumqYG3_yehBiGgrBV5_hd5E3cplG8okBaiOMoCsSPkyhBywv62aQZmCYM5hsGUMJglDGZp9tnvr7098Wv6BXhxAmx2duhTGbXPd5xsWMNaUTh-5HKRwhbTXYf_vv0njv7QdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906336884</pqid></control><display><type>article</type><title>Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>van den Bogaard, Simon J. A. ; Dumas, Eve M. ; Teeuwisse, Wouter M. ; Kan, Hermien E. ; Webb, Andrew ; Roos, Raymund A. C. ; van der Grond, Jeroen</creator><creatorcontrib>van den Bogaard, Simon J. A. ; Dumas, Eve M. ; Teeuwisse, Wouter M. ; Kan, Hermien E. ; Webb, Andrew ; Roos, Raymund A. C. ; van der Grond, Jeroen</creatorcontrib><description>Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (
p
= 0.009) and lower creatine concentration (
p
= 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (
p
= 0.024), lower creatine concentration (
p
= 0.027), and lower glutamate (
p
= 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.</description><identifier>ISSN: 0340-5354</identifier><identifier>EISSN: 1432-1459</identifier><identifier>DOI: 10.1007/s00415-011-6099-5</identifier><identifier>PMID: 21614431</identifier><identifier>CODEN: JNRYA9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adult ; Atrophy ; Biological and medical sciences ; Brain ; Brain - metabolism ; Brain - pathology ; Caudate nucleus ; Creatine ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Energy ; Energy Metabolism ; Excitotoxicity ; Female ; Frontal lobe ; Glutamic acid ; Humans ; Huntington Disease - diagnosis ; Huntington Disease - metabolism ; Huntington's disease ; Huntingtons disease ; Hypothalamus ; Hypotheses ; Image Interpretation, Computer-Assisted ; Magnetic Resonance Imaging ; Magnetic resonance spectroscopy ; Magnetic Resonance Spectroscopy - methods ; Male ; Medical sciences ; Medicine ; Medicine & Public Health ; Metabolism ; Metabolites ; Middle Aged ; Neurology ; Neuropsychological Tests ; Neuroradiology ; Neurosciences ; Original Communication ; Protons ; Putamen ; Spectrum analysis ; Substantia grisea ; Thalamus</subject><ispartof>Journal of neurology, 2011-12, Vol.258 (12), p.2230-2239</ispartof><rights>The Author(s) 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-d752d6ea84ef575ec52d77f0c5164e7c1dc66046357507ff42efb012c86b90b3</citedby><cites>FETCH-LOGICAL-c530t-d752d6ea84ef575ec52d77f0c5164e7c1dc66046357507ff42efb012c86b90b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00415-011-6099-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00415-011-6099-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24818193$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21614431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Bogaard, Simon J. A.</creatorcontrib><creatorcontrib>Dumas, Eve M.</creatorcontrib><creatorcontrib>Teeuwisse, Wouter M.</creatorcontrib><creatorcontrib>Kan, Hermien E.</creatorcontrib><creatorcontrib>Webb, Andrew</creatorcontrib><creatorcontrib>Roos, Raymund A. C.</creatorcontrib><creatorcontrib>van der Grond, Jeroen</creatorcontrib><title>Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism</title><title>Journal of neurology</title><addtitle>J Neurol</addtitle><addtitle>J Neurol</addtitle><description>Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (
p
= 0.009) and lower creatine concentration (
p
= 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (
p
= 0.024), lower creatine concentration (
p
= 0.027), and lower glutamate (
p
= 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.</description><subject>Adult</subject><subject>Atrophy</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Caudate nucleus</subject><subject>Creatine</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Excitotoxicity</subject><subject>Female</subject><subject>Frontal lobe</subject><subject>Glutamic acid</subject><subject>Humans</subject><subject>Huntington Disease - diagnosis</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Hypothalamus</subject><subject>Hypotheses</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic resonance spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Neurology</subject><subject>Neuropsychological Tests</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Communication</subject><subject>Protons</subject><subject>Putamen</subject><subject>Spectrum analysis</subject><subject>Substantia grisea</subject><subject>Thalamus</subject><issn>0340-5354</issn><issn>1432-1459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks2KFDEUhYMoztj6AG4kCOKq9Oa3qjaCDKMjDLjpfUinbrUZqpIyqW7snSvfwdfzSUzR7YwKIlmEy_lycpN7CHnK4BUDqF9nAMlUBYxVGtq2UvfIOZOCV0yq9j45ByGhUkLJM_Io5xsAaIrwkJxxppmUgp2Tb5dfpiEmO8d0oHW1xjxYOtptwNk7mjDHYINDmid0c4rZxelAfaBXuzD7sJ1j-PH1e6adz2gz0inFve8wL8je7yPFpVwM-pioHyfrE3YUA6btgY44200cfB4fkwe9HTI-Oe0rsn53ub64qq4_vv9w8fa6ckrAXHW14p1G20jsVa3QlbKue3CKaYm1Y53TGqQWRYS67yXHfgOMu0ZvWtiIFXlztJ12mxE7h2FOdjBT8qNNBxOtN38qwX8y27g3gnOluSoGL08GKX7eYZ7N6LPDYbAB4y6bluumqYG3_yehBiGgrBV5_hd5E3cplG8okBaiOMoCsSPkyhBywv62aQZmCYM5hsGUMJglDGZp9tnvr7098Wv6BXhxAmx2duhTGbXPd5xsWMNaUTh-5HKRwhbTXYf_vv0njv7QdQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>van den Bogaard, Simon J. A.</creator><creator>Dumas, Eve M.</creator><creator>Teeuwisse, Wouter M.</creator><creator>Kan, Hermien E.</creator><creator>Webb, Andrew</creator><creator>Roos, Raymund A. C.</creator><creator>van der Grond, Jeroen</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism</title><author>van den Bogaard, Simon J. A. ; Dumas, Eve M. ; Teeuwisse, Wouter M. ; Kan, Hermien E. ; Webb, Andrew ; Roos, Raymund A. C. ; van der Grond, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-d752d6ea84ef575ec52d77f0c5164e7c1dc66046357507ff42efb012c86b90b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Atrophy</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Caudate nucleus</topic><topic>Creatine</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Excitotoxicity</topic><topic>Female</topic><topic>Frontal lobe</topic><topic>Glutamic acid</topic><topic>Humans</topic><topic>Huntington Disease - diagnosis</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Hypothalamus</topic><topic>Hypotheses</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic resonance spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Neurology</topic><topic>Neuropsychological Tests</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Communication</topic><topic>Protons</topic><topic>Putamen</topic><topic>Spectrum analysis</topic><topic>Substantia grisea</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Bogaard, Simon J. A.</creatorcontrib><creatorcontrib>Dumas, Eve M.</creatorcontrib><creatorcontrib>Teeuwisse, Wouter M.</creatorcontrib><creatorcontrib>Kan, Hermien E.</creatorcontrib><creatorcontrib>Webb, Andrew</creatorcontrib><creatorcontrib>Roos, Raymund A. C.</creatorcontrib><creatorcontrib>van der Grond, Jeroen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Bogaard, Simon J. A.</au><au>Dumas, Eve M.</au><au>Teeuwisse, Wouter M.</au><au>Kan, Hermien E.</au><au>Webb, Andrew</au><au>Roos, Raymund A. C.</au><au>van der Grond, Jeroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism</atitle><jtitle>Journal of neurology</jtitle><stitle>J Neurol</stitle><addtitle>J Neurol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>258</volume><issue>12</issue><spage>2230</spage><epage>2239</epage><pages>2230-2239</pages><issn>0340-5354</issn><eissn>1432-1459</eissn><coden>JNRYA9</coden><abstract>Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (
p
= 0.009) and lower creatine concentration (
p
= 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (
p
= 0.024), lower creatine concentration (
p
= 0.027), and lower glutamate (
p
= 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21614431</pmid><doi>10.1007/s00415-011-6099-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-5354 |
ispartof | Journal of neurology, 2011-12, Vol.258 (12), p.2230-2239 |
issn | 0340-5354 1432-1459 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225625 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adult Atrophy Biological and medical sciences Brain Brain - metabolism Brain - pathology Caudate nucleus Creatine Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Energy Energy Metabolism Excitotoxicity Female Frontal lobe Glutamic acid Humans Huntington Disease - diagnosis Huntington Disease - metabolism Huntington's disease Huntingtons disease Hypothalamus Hypotheses Image Interpretation, Computer-Assisted Magnetic Resonance Imaging Magnetic resonance spectroscopy Magnetic Resonance Spectroscopy - methods Male Medical sciences Medicine Medicine & Public Health Metabolism Metabolites Middle Aged Neurology Neuropsychological Tests Neuroradiology Neurosciences Original Communication Protons Putamen Spectrum analysis Substantia grisea Thalamus |
title | Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%207-Tesla%20magnetic%20resonance%20spectroscopy%20in%20Huntington%E2%80%99s%20disease%20provides%20in%20vivo%20evidence%20for%20impaired%20energy%20metabolism&rft.jtitle=Journal%20of%20neurology&rft.au=van%20den%20Bogaard,%20Simon%20J.%20A.&rft.date=2011-12-01&rft.volume=258&rft.issue=12&rft.spage=2230&rft.epage=2239&rft.pages=2230-2239&rft.issn=0340-5354&rft.eissn=1432-1459&rft.coden=JNRYA9&rft_id=info:doi/10.1007/s00415-011-6099-5&rft_dat=%3Cproquest_pubme%3E907033030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906336884&rft_id=info:pmid/21614431&rfr_iscdi=true |