De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach in...
Gespeichert in:
Veröffentlicht in: | AAPS PharmSciTech 2011-12, Vol.12 (4), p.1324-1334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1334 |
---|---|
container_issue | 4 |
container_start_page | 1324 |
container_title | AAPS PharmSciTech |
container_volume | 12 |
creator | Muteki, Koji Swaminathan, Vidya Sekulic, Sonja S. Reid, George L. |
description | In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes
in silico
without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA
2006
). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study. |
doi_str_mv | 10.1208/s12249-011-9700-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907032284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXwAGyQd7Ag4J-4GW-QUPmVpmoXU7bWjXOTuCT21HaQ2i0vjocpVdl0ZUv3O598fQh5ydk7LtjqfeJC1LpinFe6YayqH5FDriSrtJbi8b37AXmW0iVjQnItn5IDwfWxFrU6JL8_YRVd-un8QM9HiDNYXLKzMNENtBNmegp-6cHmJSLdjDEsw0jPY7CYEr3wHcaUwXcl_5auIaPP9AdEt8vS09Dh9HdSCHq2zW52N5Bd8HSDdvRhCoPD9Jw86WFK-OL2PCIXXz5vTr5V67Ov308-riurapYrKXWjWmX7zmLX615x7Bl0_Bj5CrpeiJY3tqwoVrKtdWMldCjQAgql-wakPCIf9t7t0s5YLD5HmMw2uhnitQngzP8T70YzhF9GCqEUF0Xw-lYQw9WCKZvZJYvTBB7DkoxmDSvsqi7kmwdJzoUSNZOaF5TvURtDShH7uwdxZnY1m33NptRsdjWbnf7V_U3uEv96LYDYA6mM_IDRXIYl-vK7D1j_ACmbtwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1125240391</pqid></control><display><type>article</type><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</creator><creatorcontrib>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</creatorcontrib><description>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes
in silico
without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA
2006
). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</description><identifier>ISSN: 1530-9932</identifier><identifier>EISSN: 1530-9932</identifier><identifier>DOI: 10.1208/s12249-011-9700-4</identifier><identifier>PMID: 21969245</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Chemistry, Pharmaceutical ; Computer Simulation ; Drug Compounding ; Hardness ; Indexing in process ; Kinetics ; Least-Squares Analysis ; Models, Chemical ; Pharmaceutical Preparations - chemistry ; Pharmaceutical Preparations - standards ; Pharmacology/Toxicology ; Pharmacy ; Quality Control ; Research Article ; Solubility ; Tablets ; Technology, Pharmaceutical - methods ; Technology, Pharmaceutical - standards</subject><ispartof>AAPS PharmSciTech, 2011-12, Vol.12 (4), p.1324-1334</ispartof><rights>American Association of Pharmaceutical Scientists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</citedby><cites>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225512/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225512/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,41495,42564,51326,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muteki, Koji</creatorcontrib><creatorcontrib>Swaminathan, Vidya</creatorcontrib><creatorcontrib>Sekulic, Sonja S.</creatorcontrib><creatorcontrib>Reid, George L.</creatorcontrib><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><title>AAPS PharmSciTech</title><addtitle>AAPS PharmSciTech</addtitle><addtitle>AAPS PharmSciTech</addtitle><description>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes
in silico
without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA
2006
). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry, Pharmaceutical</subject><subject>Computer Simulation</subject><subject>Drug Compounding</subject><subject>Hardness</subject><subject>Indexing in process</subject><subject>Kinetics</subject><subject>Least-Squares Analysis</subject><subject>Models, Chemical</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical Preparations - standards</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Quality Control</subject><subject>Research Article</subject><subject>Solubility</subject><subject>Tablets</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Technology, Pharmaceutical - standards</subject><issn>1530-9932</issn><issn>1530-9932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EoqXwAGyQd7Ag4J-4GW-QUPmVpmoXU7bWjXOTuCT21HaQ2i0vjocpVdl0ZUv3O598fQh5ydk7LtjqfeJC1LpinFe6YayqH5FDriSrtJbi8b37AXmW0iVjQnItn5IDwfWxFrU6JL8_YRVd-un8QM9HiDNYXLKzMNENtBNmegp-6cHmJSLdjDEsw0jPY7CYEr3wHcaUwXcl_5auIaPP9AdEt8vS09Dh9HdSCHq2zW52N5Bd8HSDdvRhCoPD9Jw86WFK-OL2PCIXXz5vTr5V67Ov308-riurapYrKXWjWmX7zmLX615x7Bl0_Bj5CrpeiJY3tqwoVrKtdWMldCjQAgql-wakPCIf9t7t0s5YLD5HmMw2uhnitQngzP8T70YzhF9GCqEUF0Xw-lYQw9WCKZvZJYvTBB7DkoxmDSvsqi7kmwdJzoUSNZOaF5TvURtDShH7uwdxZnY1m33NptRsdjWbnf7V_U3uEv96LYDYA6mM_IDRXIYl-vK7D1j_ACmbtwM</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Muteki, Koji</creator><creator>Swaminathan, Vidya</creator><creator>Sekulic, Sonja S.</creator><creator>Reid, George L.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><author>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry, Pharmaceutical</topic><topic>Computer Simulation</topic><topic>Drug Compounding</topic><topic>Hardness</topic><topic>Indexing in process</topic><topic>Kinetics</topic><topic>Least-Squares Analysis</topic><topic>Models, Chemical</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical Preparations - standards</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Quality Control</topic><topic>Research Article</topic><topic>Solubility</topic><topic>Tablets</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Technology, Pharmaceutical - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muteki, Koji</creatorcontrib><creatorcontrib>Swaminathan, Vidya</creatorcontrib><creatorcontrib>Sekulic, Sonja S.</creatorcontrib><creatorcontrib>Reid, George L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AAPS PharmSciTech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muteki, Koji</au><au>Swaminathan, Vidya</au><au>Sekulic, Sonja S.</au><au>Reid, George L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</atitle><jtitle>AAPS PharmSciTech</jtitle><stitle>AAPS PharmSciTech</stitle><addtitle>AAPS PharmSciTech</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>12</volume><issue>4</issue><spage>1324</spage><epage>1334</epage><pages>1324-1334</pages><issn>1530-9932</issn><eissn>1530-9932</eissn><abstract>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes
in silico
without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA
2006
). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21969245</pmid><doi>10.1208/s12249-011-9700-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-9932 |
ispartof | AAPS PharmSciTech, 2011-12, Vol.12 (4), p.1324-1334 |
issn | 1530-9932 1530-9932 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Chemistry, Pharmaceutical Computer Simulation Drug Compounding Hardness Indexing in process Kinetics Least-Squares Analysis Models, Chemical Pharmaceutical Preparations - chemistry Pharmaceutical Preparations - standards Pharmacology/Toxicology Pharmacy Quality Control Research Article Solubility Tablets Technology, Pharmaceutical - methods Technology, Pharmaceutical - standards |
title | De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-risking%20Pharmaceutical%20Tablet%20Manufacture%20Through%20Process%20Understanding,%20Latent%20Variable%20Modeling,%20and%20Optimization%20Technologies&rft.jtitle=AAPS%20PharmSciTech&rft.au=Muteki,%20Koji&rft.date=2011-12-01&rft.volume=12&rft.issue=4&rft.spage=1324&rft.epage=1334&rft.pages=1324-1334&rft.issn=1530-9932&rft.eissn=1530-9932&rft_id=info:doi/10.1208/s12249-011-9700-4&rft_dat=%3Cproquest_pubme%3E907032284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1125240391&rft_id=info:pmid/21969245&rfr_iscdi=true |