De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies

In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2011-12, Vol.12 (4), p.1324-1334
Hauptverfasser: Muteki, Koji, Swaminathan, Vidya, Sekulic, Sonja S., Reid, George L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 4
container_start_page 1324
container_title AAPS PharmSciTech
container_volume 12
creator Muteki, Koji
Swaminathan, Vidya
Sekulic, Sonja S.
Reid, George L.
description In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.
doi_str_mv 10.1208/s12249-011-9700-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907032284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXwAGyQd7Ag4J-4GW-QUPmVpmoXU7bWjXOTuCT21HaQ2i0vjocpVdl0ZUv3O598fQh5ydk7LtjqfeJC1LpinFe6YayqH5FDriSrtJbi8b37AXmW0iVjQnItn5IDwfWxFrU6JL8_YRVd-un8QM9HiDNYXLKzMNENtBNmegp-6cHmJSLdjDEsw0jPY7CYEr3wHcaUwXcl_5auIaPP9AdEt8vS09Dh9HdSCHq2zW52N5Bd8HSDdvRhCoPD9Jw86WFK-OL2PCIXXz5vTr5V67Ov308-riurapYrKXWjWmX7zmLX615x7Bl0_Bj5CrpeiJY3tqwoVrKtdWMldCjQAgql-wakPCIf9t7t0s5YLD5HmMw2uhnitQngzP8T70YzhF9GCqEUF0Xw-lYQw9WCKZvZJYvTBB7DkoxmDSvsqi7kmwdJzoUSNZOaF5TvURtDShH7uwdxZnY1m33NptRsdjWbnf7V_U3uEv96LYDYA6mM_IDRXIYl-vK7D1j_ACmbtwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1125240391</pqid></control><display><type>article</type><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</creator><creatorcontrib>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</creatorcontrib><description>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</description><identifier>ISSN: 1530-9932</identifier><identifier>EISSN: 1530-9932</identifier><identifier>DOI: 10.1208/s12249-011-9700-4</identifier><identifier>PMID: 21969245</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Chemistry, Pharmaceutical ; Computer Simulation ; Drug Compounding ; Hardness ; Indexing in process ; Kinetics ; Least-Squares Analysis ; Models, Chemical ; Pharmaceutical Preparations - chemistry ; Pharmaceutical Preparations - standards ; Pharmacology/Toxicology ; Pharmacy ; Quality Control ; Research Article ; Solubility ; Tablets ; Technology, Pharmaceutical - methods ; Technology, Pharmaceutical - standards</subject><ispartof>AAPS PharmSciTech, 2011-12, Vol.12 (4), p.1324-1334</ispartof><rights>American Association of Pharmaceutical Scientists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</citedby><cites>FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225512/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225512/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,41495,42564,51326,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muteki, Koji</creatorcontrib><creatorcontrib>Swaminathan, Vidya</creatorcontrib><creatorcontrib>Sekulic, Sonja S.</creatorcontrib><creatorcontrib>Reid, George L.</creatorcontrib><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><title>AAPS PharmSciTech</title><addtitle>AAPS PharmSciTech</addtitle><addtitle>AAPS PharmSciTech</addtitle><description>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry, Pharmaceutical</subject><subject>Computer Simulation</subject><subject>Drug Compounding</subject><subject>Hardness</subject><subject>Indexing in process</subject><subject>Kinetics</subject><subject>Least-Squares Analysis</subject><subject>Models, Chemical</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceutical Preparations - standards</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Quality Control</subject><subject>Research Article</subject><subject>Solubility</subject><subject>Tablets</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Technology, Pharmaceutical - standards</subject><issn>1530-9932</issn><issn>1530-9932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EoqXwAGyQd7Ag4J-4GW-QUPmVpmoXU7bWjXOTuCT21HaQ2i0vjocpVdl0ZUv3O598fQh5ydk7LtjqfeJC1LpinFe6YayqH5FDriSrtJbi8b37AXmW0iVjQnItn5IDwfWxFrU6JL8_YRVd-un8QM9HiDNYXLKzMNENtBNmegp-6cHmJSLdjDEsw0jPY7CYEr3wHcaUwXcl_5auIaPP9AdEt8vS09Dh9HdSCHq2zW52N5Bd8HSDdvRhCoPD9Jw86WFK-OL2PCIXXz5vTr5V67Ov308-riurapYrKXWjWmX7zmLX615x7Bl0_Bj5CrpeiJY3tqwoVrKtdWMldCjQAgql-wakPCIf9t7t0s5YLD5HmMw2uhnitQngzP8T70YzhF9GCqEUF0Xw-lYQw9WCKZvZJYvTBB7DkoxmDSvsqi7kmwdJzoUSNZOaF5TvURtDShH7uwdxZnY1m33NptRsdjWbnf7V_U3uEv96LYDYA6mM_IDRXIYl-vK7D1j_ACmbtwM</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Muteki, Koji</creator><creator>Swaminathan, Vidya</creator><creator>Sekulic, Sonja S.</creator><creator>Reid, George L.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111201</creationdate><title>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</title><author>Muteki, Koji ; Swaminathan, Vidya ; Sekulic, Sonja S. ; Reid, George L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry, Pharmaceutical</topic><topic>Computer Simulation</topic><topic>Drug Compounding</topic><topic>Hardness</topic><topic>Indexing in process</topic><topic>Kinetics</topic><topic>Least-Squares Analysis</topic><topic>Models, Chemical</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceutical Preparations - standards</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Quality Control</topic><topic>Research Article</topic><topic>Solubility</topic><topic>Tablets</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Technology, Pharmaceutical - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muteki, Koji</creatorcontrib><creatorcontrib>Swaminathan, Vidya</creatorcontrib><creatorcontrib>Sekulic, Sonja S.</creatorcontrib><creatorcontrib>Reid, George L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AAPS PharmSciTech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muteki, Koji</au><au>Swaminathan, Vidya</au><au>Sekulic, Sonja S.</au><au>Reid, George L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies</atitle><jtitle>AAPS PharmSciTech</jtitle><stitle>AAPS PharmSciTech</stitle><addtitle>AAPS PharmSciTech</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>12</volume><issue>4</issue><spage>1324</spage><epage>1334</epage><pages>1324-1334</pages><issn>1530-9932</issn><eissn>1530-9932</eissn><abstract>In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21969245</pmid><doi>10.1208/s12249-011-9700-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-9932
ispartof AAPS PharmSciTech, 2011-12, Vol.12 (4), p.1324-1334
issn 1530-9932
1530-9932
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Chemistry, Pharmaceutical
Computer Simulation
Drug Compounding
Hardness
Indexing in process
Kinetics
Least-Squares Analysis
Models, Chemical
Pharmaceutical Preparations - chemistry
Pharmaceutical Preparations - standards
Pharmacology/Toxicology
Pharmacy
Quality Control
Research Article
Solubility
Tablets
Technology, Pharmaceutical - methods
Technology, Pharmaceutical - standards
title De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-risking%20Pharmaceutical%20Tablet%20Manufacture%20Through%20Process%20Understanding,%20Latent%20Variable%20Modeling,%20and%20Optimization%20Technologies&rft.jtitle=AAPS%20PharmSciTech&rft.au=Muteki,%20Koji&rft.date=2011-12-01&rft.volume=12&rft.issue=4&rft.spage=1324&rft.epage=1334&rft.pages=1324-1334&rft.issn=1530-9932&rft.eissn=1530-9932&rft_id=info:doi/10.1208/s12249-011-9700-4&rft_dat=%3Cproquest_pubme%3E907032284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1125240391&rft_id=info:pmid/21969245&rfr_iscdi=true