Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells
Non‐Technical Summary To be effective, synaptic transmission requires precise alignment of the presynaptic terminal, releasing the neurotransmitter, with the postsynaptic density, where receptors are present at high density. Complex molecular mechanisms ensure this interplay between neurons and, in...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2011-10, Vol.589 (20), p.4959-4980 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4980 |
---|---|
container_issue | 20 |
container_start_page | 4959 |
container_title | The Journal of physiology |
container_volume | 589 |
creator | Panzanelli, Patrizia Gunn, Benjamin G. Schlatter, Monika C. Benke, Dietmar Tyagarajan, Shiva K. Scheiffele, Peter Belelli, Delia Lambert, Jeremy J. Rudolph, Uwe Fritschy, Jean‐Marc |
description | Non‐Technical Summary To be effective, synaptic transmission requires precise alignment of the presynaptic terminal, releasing the neurotransmitter, with the postsynaptic density, where receptors are present at high density. Complex molecular mechanisms ensure this interplay between neurons and, in addition, stabilize receptors in the postsynaptic membrane. To explore these mechanisms at GABAergic synapses, which mediate inhibitory neurotransmission in the brain, we investigated here the consequences of ‘removing’ the receptors, using targeted gene deletion. Our results show that the receptors are dispensable for synapse formation, but are required for the postsynaptic aggregation of several proteins involved in receptor trafficking, anchoring and regulation. Defects in the molecular regulation of GABAergic synapses have been associated with neurodevelopmental disorders, mental retardation, anxiety and mood disorders, underscoring the relevance of fine tuning of GABAergic inhibition for proper brain function.
Pyramidal cells express various GABAA receptor (GABAAR) subtypes, possibly to match inputs from functionally distinct interneurons targeting specific subcellular domains. Postsynaptic anchoring of GABAARs is ensured by a complex interplay between the scaffolding protein gephyrin, neuroligin‐2 and collybistin. Direct interactions between these proteins and GABAAR subunits might contribute to synapse‐specific distribution of GABAAR subtypes. In addition, the dystrophin–glycoprotein complex, mainly localized at perisomatic synapses, regulates GABAAR postsynaptic clustering at these sites. Here, we investigated how the functional and molecular organization of GABAergic synapses in CA1 pyramidal neurons is altered in mice lacking the GABAAR α2 subunit (α2‐KO). We report a marked, layer‐specific loss of postsynaptic gephyrin and neuroligin‐2 clusters, without changes in GABAergic presynaptic terminals. Whole‐cell voltage‐clamp recordings in slices from α2‐KO mice show a 40% decrease in GABAergic mIPSC frequency, with unchanged amplitude and kinetics. Applying low/high concentrations of zolpidem to discriminate between α1‐ and α2/α3‐GABAARs demonstrates that residual mIPSCs in α2‐KO mice are mediated by α1‐GABAARs. Immunofluorescence analysis reveals maintenance of α1‐GABAAR and neuroligin‐2 clusters, but not gephyrin clusters, in perisomatic synapses of mutant mice, along with a complete loss of these three markers on the axon initial segment. This strik |
doi_str_mv | 10.1113/jphysiol.2011.216028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3224886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3374290781</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3000-9880beacfb2e2addcbd815af31a9722e5d3a54bf19260c5faaa6a438d572a9893</originalsourceid><addsrcrecordid>eNpdks1u1DAUhS0EokPhDRCyxIJVBv_kx94ghYG2oEqwKGvrxnFmPErsYCdAdki8QJ-RJ8HTaStgY1_7fjo-Vz4IPadkTSnlr_fjbonW92tGKF0zWhImHqAVzUuZVZXkD9GKEMYyXhX0BD2JcU8I5UTKx-iEUcGK1FyhX-9snKzTEx6M3oGzcYg4mO3cw2Twef22rtNRm3HyAYNr8dakd4N1WPdznEyqthgmPKYq-gEmq28w-OF__7xOq0sXcXEwRhOxd3hTUzwuAQbbQo-16fv4FD3qoI_m2e1-ir6cvb_aXGSXn84_bOrLbM8JIZkUgjQGdNcww6BtddMKWkDHKciKMVO0HIq86ahkJdFFBwAl5Fy0RcVACslP0Zuj7jg3g2m1cVOAXo3BDhAW5cGqfzvO7tTWf1OcsVyIMgm8uhUI_uts4qQGGw8jgDN-jkokizmTkiTy5X_k3s_BpekULfKCcyJonqgXfxu6d3L3PQmQR-C77c1y36dEHSKg7iKgDhFQxwioq4-f84oQ_geb7apv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545330814</pqid></control><display><type>article</type><title>Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Panzanelli, Patrizia ; Gunn, Benjamin G. ; Schlatter, Monika C. ; Benke, Dietmar ; Tyagarajan, Shiva K. ; Scheiffele, Peter ; Belelli, Delia ; Lambert, Jeremy J. ; Rudolph, Uwe ; Fritschy, Jean‐Marc</creator><creatorcontrib>Panzanelli, Patrizia ; Gunn, Benjamin G. ; Schlatter, Monika C. ; Benke, Dietmar ; Tyagarajan, Shiva K. ; Scheiffele, Peter ; Belelli, Delia ; Lambert, Jeremy J. ; Rudolph, Uwe ; Fritschy, Jean‐Marc</creatorcontrib><description>Non‐Technical Summary To be effective, synaptic transmission requires precise alignment of the presynaptic terminal, releasing the neurotransmitter, with the postsynaptic density, where receptors are present at high density. Complex molecular mechanisms ensure this interplay between neurons and, in addition, stabilize receptors in the postsynaptic membrane. To explore these mechanisms at GABAergic synapses, which mediate inhibitory neurotransmission in the brain, we investigated here the consequences of ‘removing’ the receptors, using targeted gene deletion. Our results show that the receptors are dispensable for synapse formation, but are required for the postsynaptic aggregation of several proteins involved in receptor trafficking, anchoring and regulation. Defects in the molecular regulation of GABAergic synapses have been associated with neurodevelopmental disorders, mental retardation, anxiety and mood disorders, underscoring the relevance of fine tuning of GABAergic inhibition for proper brain function.
Pyramidal cells express various GABAA receptor (GABAAR) subtypes, possibly to match inputs from functionally distinct interneurons targeting specific subcellular domains. Postsynaptic anchoring of GABAARs is ensured by a complex interplay between the scaffolding protein gephyrin, neuroligin‐2 and collybistin. Direct interactions between these proteins and GABAAR subunits might contribute to synapse‐specific distribution of GABAAR subtypes. In addition, the dystrophin–glycoprotein complex, mainly localized at perisomatic synapses, regulates GABAAR postsynaptic clustering at these sites. Here, we investigated how the functional and molecular organization of GABAergic synapses in CA1 pyramidal neurons is altered in mice lacking the GABAAR α2 subunit (α2‐KO). We report a marked, layer‐specific loss of postsynaptic gephyrin and neuroligin‐2 clusters, without changes in GABAergic presynaptic terminals. Whole‐cell voltage‐clamp recordings in slices from α2‐KO mice show a 40% decrease in GABAergic mIPSC frequency, with unchanged amplitude and kinetics. Applying low/high concentrations of zolpidem to discriminate between α1‐ and α2/α3‐GABAARs demonstrates that residual mIPSCs in α2‐KO mice are mediated by α1‐GABAARs. Immunofluorescence analysis reveals maintenance of α1‐GABAAR and neuroligin‐2 clusters, but not gephyrin clusters, in perisomatic synapses of mutant mice, along with a complete loss of these three markers on the axon initial segment. This striking subcellular difference correlates with the preservation of dystrophin clusters, colocalized with neuroligin‐2 and α1‐GABAARs on pyramidal cell bodies of mutant mice. Dystrophin was not detected on the axon initial segment in either genotype. Collectively, these findings reveal synapse‐specific anchoring of GABAARs at postsynaptic sites and suggest that the dystrophin–glycoprotein complex contributes to stabilize α1‐GABAAR and neuroligin‐2, but not gephyrin, in perisomatic postsynaptic densities.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2011.216028</identifier><identifier>PMID: 21825022</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - physiology ; Carrier Proteins - metabolism ; Cell Adhesion Molecules, Neuronal - metabolism ; Dystrophin - metabolism ; Dystrophin-Associated Protein Complex - metabolism ; Female ; Inhibitory Postsynaptic Potentials ; Male ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Miniature Postsynaptic Potentials ; Nerve Tissue Proteins - metabolism ; Neuroscience: Development/Plasticity/Repair ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Receptors, GABA-A - deficiency ; Receptors, GABA-A - genetics ; Receptors, GABA-A - physiology ; Rodents ; Synapses - metabolism ; Synapses - physiology</subject><ispartof>The Journal of physiology, 2011-10, Vol.589 (20), p.4959-4980</ispartof><rights>2011 The Authors. Journal compilation © 2011 The Physiological Society</rights><rights>Journal compilation © 2011 The Physiological Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224886/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224886/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21825022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panzanelli, Patrizia</creatorcontrib><creatorcontrib>Gunn, Benjamin G.</creatorcontrib><creatorcontrib>Schlatter, Monika C.</creatorcontrib><creatorcontrib>Benke, Dietmar</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><creatorcontrib>Belelli, Delia</creatorcontrib><creatorcontrib>Lambert, Jeremy J.</creatorcontrib><creatorcontrib>Rudolph, Uwe</creatorcontrib><creatorcontrib>Fritschy, Jean‐Marc</creatorcontrib><title>Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Non‐Technical Summary To be effective, synaptic transmission requires precise alignment of the presynaptic terminal, releasing the neurotransmitter, with the postsynaptic density, where receptors are present at high density. Complex molecular mechanisms ensure this interplay between neurons and, in addition, stabilize receptors in the postsynaptic membrane. To explore these mechanisms at GABAergic synapses, which mediate inhibitory neurotransmission in the brain, we investigated here the consequences of ‘removing’ the receptors, using targeted gene deletion. Our results show that the receptors are dispensable for synapse formation, but are required for the postsynaptic aggregation of several proteins involved in receptor trafficking, anchoring and regulation. Defects in the molecular regulation of GABAergic synapses have been associated with neurodevelopmental disorders, mental retardation, anxiety and mood disorders, underscoring the relevance of fine tuning of GABAergic inhibition for proper brain function.
Pyramidal cells express various GABAA receptor (GABAAR) subtypes, possibly to match inputs from functionally distinct interneurons targeting specific subcellular domains. Postsynaptic anchoring of GABAARs is ensured by a complex interplay between the scaffolding protein gephyrin, neuroligin‐2 and collybistin. Direct interactions between these proteins and GABAAR subunits might contribute to synapse‐specific distribution of GABAAR subtypes. In addition, the dystrophin–glycoprotein complex, mainly localized at perisomatic synapses, regulates GABAAR postsynaptic clustering at these sites. Here, we investigated how the functional and molecular organization of GABAergic synapses in CA1 pyramidal neurons is altered in mice lacking the GABAAR α2 subunit (α2‐KO). We report a marked, layer‐specific loss of postsynaptic gephyrin and neuroligin‐2 clusters, without changes in GABAergic presynaptic terminals. Whole‐cell voltage‐clamp recordings in slices from α2‐KO mice show a 40% decrease in GABAergic mIPSC frequency, with unchanged amplitude and kinetics. Applying low/high concentrations of zolpidem to discriminate between α1‐ and α2/α3‐GABAARs demonstrates that residual mIPSCs in α2‐KO mice are mediated by α1‐GABAARs. Immunofluorescence analysis reveals maintenance of α1‐GABAAR and neuroligin‐2 clusters, but not gephyrin clusters, in perisomatic synapses of mutant mice, along with a complete loss of these three markers on the axon initial segment. This striking subcellular difference correlates with the preservation of dystrophin clusters, colocalized with neuroligin‐2 and α1‐GABAARs on pyramidal cell bodies of mutant mice. Dystrophin was not detected on the axon initial segment in either genotype. Collectively, these findings reveal synapse‐specific anchoring of GABAARs at postsynaptic sites and suggest that the dystrophin–glycoprotein complex contributes to stabilize α1‐GABAAR and neuroligin‐2, but not gephyrin, in perisomatic postsynaptic densities.</description><subject>Animals</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Dystrophin - metabolism</subject><subject>Dystrophin-Associated Protein Complex - metabolism</subject><subject>Female</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Miniature Postsynaptic Potentials</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuroscience: Development/Plasticity/Repair</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, GABA-A - deficiency</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - physiology</subject><subject>Rodents</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks1u1DAUhS0EokPhDRCyxIJVBv_kx94ghYG2oEqwKGvrxnFmPErsYCdAdki8QJ-RJ8HTaStgY1_7fjo-Vz4IPadkTSnlr_fjbonW92tGKF0zWhImHqAVzUuZVZXkD9GKEMYyXhX0BD2JcU8I5UTKx-iEUcGK1FyhX-9snKzTEx6M3oGzcYg4mO3cw2Twef22rtNRm3HyAYNr8dakd4N1WPdznEyqthgmPKYq-gEmq28w-OF__7xOq0sXcXEwRhOxd3hTUzwuAQbbQo-16fv4FD3qoI_m2e1-ir6cvb_aXGSXn84_bOrLbM8JIZkUgjQGdNcww6BtddMKWkDHKciKMVO0HIq86ahkJdFFBwAl5Fy0RcVACslP0Zuj7jg3g2m1cVOAXo3BDhAW5cGqfzvO7tTWf1OcsVyIMgm8uhUI_uts4qQGGw8jgDN-jkokizmTkiTy5X_k3s_BpekULfKCcyJonqgXfxu6d3L3PQmQR-C77c1y36dEHSKg7iKgDhFQxwioq4-f84oQ_geb7apv</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Panzanelli, Patrizia</creator><creator>Gunn, Benjamin G.</creator><creator>Schlatter, Monika C.</creator><creator>Benke, Dietmar</creator><creator>Tyagarajan, Shiva K.</creator><creator>Scheiffele, Peter</creator><creator>Belelli, Delia</creator><creator>Lambert, Jeremy J.</creator><creator>Rudolph, Uwe</creator><creator>Fritschy, Jean‐Marc</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111015</creationdate><title>Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells</title><author>Panzanelli, Patrizia ; Gunn, Benjamin G. ; Schlatter, Monika C. ; Benke, Dietmar ; Tyagarajan, Shiva K. ; Scheiffele, Peter ; Belelli, Delia ; Lambert, Jeremy J. ; Rudolph, Uwe ; Fritschy, Jean‐Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3000-9880beacfb2e2addcbd815af31a9722e5d3a54bf19260c5faaa6a438d572a9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Dystrophin - metabolism</topic><topic>Dystrophin-Associated Protein Complex - metabolism</topic><topic>Female</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Miniature Postsynaptic Potentials</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuroscience: Development/Plasticity/Repair</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, GABA-A - deficiency</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - physiology</topic><topic>Rodents</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panzanelli, Patrizia</creatorcontrib><creatorcontrib>Gunn, Benjamin G.</creatorcontrib><creatorcontrib>Schlatter, Monika C.</creatorcontrib><creatorcontrib>Benke, Dietmar</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><creatorcontrib>Belelli, Delia</creatorcontrib><creatorcontrib>Lambert, Jeremy J.</creatorcontrib><creatorcontrib>Rudolph, Uwe</creatorcontrib><creatorcontrib>Fritschy, Jean‐Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panzanelli, Patrizia</au><au>Gunn, Benjamin G.</au><au>Schlatter, Monika C.</au><au>Benke, Dietmar</au><au>Tyagarajan, Shiva K.</au><au>Scheiffele, Peter</au><au>Belelli, Delia</au><au>Lambert, Jeremy J.</au><au>Rudolph, Uwe</au><au>Fritschy, Jean‐Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>589</volume><issue>20</issue><spage>4959</spage><epage>4980</epage><pages>4959-4980</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Non‐Technical Summary To be effective, synaptic transmission requires precise alignment of the presynaptic terminal, releasing the neurotransmitter, with the postsynaptic density, where receptors are present at high density. Complex molecular mechanisms ensure this interplay between neurons and, in addition, stabilize receptors in the postsynaptic membrane. To explore these mechanisms at GABAergic synapses, which mediate inhibitory neurotransmission in the brain, we investigated here the consequences of ‘removing’ the receptors, using targeted gene deletion. Our results show that the receptors are dispensable for synapse formation, but are required for the postsynaptic aggregation of several proteins involved in receptor trafficking, anchoring and regulation. Defects in the molecular regulation of GABAergic synapses have been associated with neurodevelopmental disorders, mental retardation, anxiety and mood disorders, underscoring the relevance of fine tuning of GABAergic inhibition for proper brain function.
Pyramidal cells express various GABAA receptor (GABAAR) subtypes, possibly to match inputs from functionally distinct interneurons targeting specific subcellular domains. Postsynaptic anchoring of GABAARs is ensured by a complex interplay between the scaffolding protein gephyrin, neuroligin‐2 and collybistin. Direct interactions between these proteins and GABAAR subunits might contribute to synapse‐specific distribution of GABAAR subtypes. In addition, the dystrophin–glycoprotein complex, mainly localized at perisomatic synapses, regulates GABAAR postsynaptic clustering at these sites. Here, we investigated how the functional and molecular organization of GABAergic synapses in CA1 pyramidal neurons is altered in mice lacking the GABAAR α2 subunit (α2‐KO). We report a marked, layer‐specific loss of postsynaptic gephyrin and neuroligin‐2 clusters, without changes in GABAergic presynaptic terminals. Whole‐cell voltage‐clamp recordings in slices from α2‐KO mice show a 40% decrease in GABAergic mIPSC frequency, with unchanged amplitude and kinetics. Applying low/high concentrations of zolpidem to discriminate between α1‐ and α2/α3‐GABAARs demonstrates that residual mIPSCs in α2‐KO mice are mediated by α1‐GABAARs. Immunofluorescence analysis reveals maintenance of α1‐GABAAR and neuroligin‐2 clusters, but not gephyrin clusters, in perisomatic synapses of mutant mice, along with a complete loss of these three markers on the axon initial segment. This striking subcellular difference correlates with the preservation of dystrophin clusters, colocalized with neuroligin‐2 and α1‐GABAARs on pyramidal cell bodies of mutant mice. Dystrophin was not detected on the axon initial segment in either genotype. Collectively, these findings reveal synapse‐specific anchoring of GABAARs at postsynaptic sites and suggest that the dystrophin–glycoprotein complex contributes to stabilize α1‐GABAAR and neuroligin‐2, but not gephyrin, in perisomatic postsynaptic densities.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21825022</pmid><doi>10.1113/jphysiol.2011.216028</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2011-10, Vol.589 (20), p.4959-4980 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3224886 |
source | MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals CA1 Region, Hippocampal - metabolism CA1 Region, Hippocampal - physiology Carrier Proteins - metabolism Cell Adhesion Molecules, Neuronal - metabolism Dystrophin - metabolism Dystrophin-Associated Protein Complex - metabolism Female Inhibitory Postsynaptic Potentials Male Membrane Proteins - metabolism Mice Mice, Knockout Miniature Postsynaptic Potentials Nerve Tissue Proteins - metabolism Neuroscience: Development/Plasticity/Repair Pyramidal Cells - metabolism Pyramidal Cells - physiology Receptors, GABA-A - deficiency Receptors, GABA-A - genetics Receptors, GABA-A - physiology Rodents Synapses - metabolism Synapses - physiology |
title | Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20mechanisms%20regulate%20GABAA%20receptor%20and%20gephyrin%20clustering%20at%20perisomatic%20and%20axo%E2%80%90axonic%20synapses%20on%20CA1%20pyramidal%20cells&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Panzanelli,%20Patrizia&rft.date=2011-10-15&rft.volume=589&rft.issue=20&rft.spage=4959&rft.epage=4980&rft.pages=4959-4980&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2011.216028&rft_dat=%3Cproquest_pubme%3E3374290781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545330814&rft_id=info:pmid/21825022&rfr_iscdi=true |