Functional Network Organization of the Human Brain

Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2011-11, Vol.72 (4), p.665-678
Hauptverfasser: Power, Jonathan D., Cohen, Alexander L., Nelson, Steven M., Wig, Gagan S., Barnes, Kelly Anne, Church, Jessica A., Vogel, Alecia C., Laumann, Timothy O., Miezin, Fran M., Schlaggar, Bradley L., Petersen, Steven E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 4
container_start_page 665
container_title Neuron (Cambridge, Mass.)
container_volume 72
creator Power, Jonathan D.
Cohen, Alexander L.
Nelson, Steven M.
Wig, Gagan S.
Barnes, Kelly Anne
Church, Jessica A.
Vogel, Alecia C.
Laumann, Timothy O.
Miezin, Fran M.
Schlaggar, Bradley L.
Petersen, Steven E.
description Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. [Display omitted] ► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities
doi_str_mv 10.1016/j.neuron.2011.09.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311007926</els_id><sourcerecordid>911168302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KBFvgHyAUiQOnpDN24tgXJIpKqYTgAmfL6zjgJWuDnVDRX1-vltKWA5xG8nzzZvweIfsIFQLyL4vK2ykGX1FArEBWAPwTmSHItqxRyg0yAyF5yWnLtsnnlBYAWDcSt8g2pSBlzdsZoWeTN6MLXg_FpR1_hnhfXMVb7d0vvXouQl-Md7Y4n5baF1-jdn6XbPZ6SHbvpe6Qm7Nv16fn5cXV9x-nJxelaYQYy7wJrTYCa9CMiVrUrOdGU9FD13PRyXnLa9pwLbuuZfNethJla1D3puM4Z2yHHK91H6b50nbG-jHqQT1Et9TxWQXt1P8d7-7UbXhSjFIqGpEFjl4EYnicbBrV0iVjh0F7G6ak8oHIBQP6MQkNb3nTyEweviEXYYrZvaSwQcqBM46ZqteUiSGlaPvXqxHUKj21UOv01Co9BVLl9PLYwb8_fh36E9dfS2z2_cnZqJJx1hvbuWjNqLrg3t_wG2aIrGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512606361</pqid></control><display><type>article</type><title>Functional Network Organization of the Human Brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creator><creatorcontrib>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creatorcontrib><description>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. [Display omitted] ► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.09.006</identifier><identifier>PMID: 22099467</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Brain ; Brain - cytology ; Brain - physiology ; Brain Mapping - methods ; Cohort Studies ; Data processing ; Female ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Nerve Net - cytology ; Nerve Net - physiology ; Psychomotor Performance - physiology ; Software ; Young Adult</subject><ispartof>Neuron (Cambridge, Mass.), 2011-11, Vol.72 (4), p.665-678</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 17, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</citedby><cites>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311007926$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22099467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Cohen, Alexander L.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Barnes, Kelly Anne</creatorcontrib><creatorcontrib>Church, Jessica A.</creatorcontrib><creatorcontrib>Vogel, Alecia C.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Miezin, Fran M.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><title>Functional Network Organization of the Human Brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. [Display omitted] ► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cohort Studies</subject><subject>Data processing</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Software</subject><subject>Young Adult</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha0KBFvgHyAUiQOnpDN24tgXJIpKqYTgAmfL6zjgJWuDnVDRX1-vltKWA5xG8nzzZvweIfsIFQLyL4vK2ykGX1FArEBWAPwTmSHItqxRyg0yAyF5yWnLtsnnlBYAWDcSt8g2pSBlzdsZoWeTN6MLXg_FpR1_hnhfXMVb7d0vvXouQl-Md7Y4n5baF1-jdn6XbPZ6SHbvpe6Qm7Nv16fn5cXV9x-nJxelaYQYy7wJrTYCa9CMiVrUrOdGU9FD13PRyXnLa9pwLbuuZfNethJla1D3puM4Z2yHHK91H6b50nbG-jHqQT1Et9TxWQXt1P8d7-7UbXhSjFIqGpEFjl4EYnicbBrV0iVjh0F7G6ak8oHIBQP6MQkNb3nTyEweviEXYYrZvaSwQcqBM46ZqteUiSGlaPvXqxHUKj21UOv01Co9BVLl9PLYwb8_fh36E9dfS2z2_cnZqJJx1hvbuWjNqLrg3t_wG2aIrGY</recordid><startdate>20111117</startdate><enddate>20111117</enddate><creator>Power, Jonathan D.</creator><creator>Cohen, Alexander L.</creator><creator>Nelson, Steven M.</creator><creator>Wig, Gagan S.</creator><creator>Barnes, Kelly Anne</creator><creator>Church, Jessica A.</creator><creator>Vogel, Alecia C.</creator><creator>Laumann, Timothy O.</creator><creator>Miezin, Fran M.</creator><creator>Schlaggar, Bradley L.</creator><creator>Petersen, Steven E.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111117</creationdate><title>Functional Network Organization of the Human Brain</title><author>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cohort Studies</topic><topic>Data processing</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Software</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Cohen, Alexander L.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Barnes, Kelly Anne</creatorcontrib><creatorcontrib>Church, Jessica A.</creatorcontrib><creatorcontrib>Vogel, Alecia C.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Miezin, Fran M.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, Jonathan D.</au><au>Cohen, Alexander L.</au><au>Nelson, Steven M.</au><au>Wig, Gagan S.</au><au>Barnes, Kelly Anne</au><au>Church, Jessica A.</au><au>Vogel, Alecia C.</au><au>Laumann, Timothy O.</au><au>Miezin, Fran M.</au><au>Schlaggar, Bradley L.</au><au>Petersen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Network Organization of the Human Brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-11-17</date><risdate>2011</risdate><volume>72</volume><issue>4</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. [Display omitted] ► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22099467</pmid><doi>10.1016/j.neuron.2011.09.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2011-11, Vol.72 (4), p.665-678
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222858
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adult
Algorithms
Brain
Brain - cytology
Brain - physiology
Brain Mapping - methods
Cohort Studies
Data processing
Female
Humans
Magnetic Resonance Imaging - methods
Male
Nerve Net - cytology
Nerve Net - physiology
Psychomotor Performance - physiology
Software
Young Adult
title Functional Network Organization of the Human Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Network%20Organization%20of%20the%20Human%20Brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Power,%20Jonathan%C2%A0D.&rft.date=2011-11-17&rft.volume=72&rft.issue=4&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.09.006&rft_dat=%3Cproquest_pubme%3E911168302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512606361&rft_id=info:pmid/22099467&rft_els_id=S0896627311007926&rfr_iscdi=true