Functional Network Organization of the Human Brain
Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional area...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2011-11, Vol.72 (4), p.665-678 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 4 |
container_start_page | 665 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 72 |
creator | Power, Jonathan D. Cohen, Alexander L. Nelson, Steven M. Wig, Gagan S. Barnes, Kelly Anne Church, Jessica A. Vogel, Alecia C. Laumann, Timothy O. Miezin, Fran M. Schlaggar, Bradley L. Petersen, Steven E. |
description | Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.
[Display omitted]
► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities |
doi_str_mv | 10.1016/j.neuron.2011.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627311007926</els_id><sourcerecordid>911168302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KBFvgHyAUiQOnpDN24tgXJIpKqYTgAmfL6zjgJWuDnVDRX1-vltKWA5xG8nzzZvweIfsIFQLyL4vK2ykGX1FArEBWAPwTmSHItqxRyg0yAyF5yWnLtsnnlBYAWDcSt8g2pSBlzdsZoWeTN6MLXg_FpR1_hnhfXMVb7d0vvXouQl-Md7Y4n5baF1-jdn6XbPZ6SHbvpe6Qm7Nv16fn5cXV9x-nJxelaYQYy7wJrTYCa9CMiVrUrOdGU9FD13PRyXnLa9pwLbuuZfNethJla1D3puM4Z2yHHK91H6b50nbG-jHqQT1Et9TxWQXt1P8d7-7UbXhSjFIqGpEFjl4EYnicbBrV0iVjh0F7G6ak8oHIBQP6MQkNb3nTyEweviEXYYrZvaSwQcqBM46ZqteUiSGlaPvXqxHUKj21UOv01Co9BVLl9PLYwb8_fh36E9dfS2z2_cnZqJJx1hvbuWjNqLrg3t_wG2aIrGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512606361</pqid></control><display><type>article</type><title>Functional Network Organization of the Human Brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creator><creatorcontrib>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</creatorcontrib><description>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.
[Display omitted]
► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2011.09.006</identifier><identifier>PMID: 22099467</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Brain ; Brain - cytology ; Brain - physiology ; Brain Mapping - methods ; Cohort Studies ; Data processing ; Female ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Nerve Net - cytology ; Nerve Net - physiology ; Psychomotor Performance - physiology ; Software ; Young Adult</subject><ispartof>Neuron (Cambridge, Mass.), 2011-11, Vol.72 (4), p.665-678</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 17, 2011</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</citedby><cites>FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627311007926$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22099467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Cohen, Alexander L.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Barnes, Kelly Anne</creatorcontrib><creatorcontrib>Church, Jessica A.</creatorcontrib><creatorcontrib>Vogel, Alecia C.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Miezin, Fran M.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><title>Functional Network Organization of the Human Brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.
[Display omitted]
► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cohort Studies</subject><subject>Data processing</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Software</subject><subject>Young Adult</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha0KBFvgHyAUiQOnpDN24tgXJIpKqYTgAmfL6zjgJWuDnVDRX1-vltKWA5xG8nzzZvweIfsIFQLyL4vK2ykGX1FArEBWAPwTmSHItqxRyg0yAyF5yWnLtsnnlBYAWDcSt8g2pSBlzdsZoWeTN6MLXg_FpR1_hnhfXMVb7d0vvXouQl-Md7Y4n5baF1-jdn6XbPZ6SHbvpe6Qm7Nv16fn5cXV9x-nJxelaYQYy7wJrTYCa9CMiVrUrOdGU9FD13PRyXnLa9pwLbuuZfNethJla1D3puM4Z2yHHK91H6b50nbG-jHqQT1Et9TxWQXt1P8d7-7UbXhSjFIqGpEFjl4EYnicbBrV0iVjh0F7G6ak8oHIBQP6MQkNb3nTyEweviEXYYrZvaSwQcqBM46ZqteUiSGlaPvXqxHUKj21UOv01Co9BVLl9PLYwb8_fh36E9dfS2z2_cnZqJJx1hvbuWjNqLrg3t_wG2aIrGY</recordid><startdate>20111117</startdate><enddate>20111117</enddate><creator>Power, Jonathan D.</creator><creator>Cohen, Alexander L.</creator><creator>Nelson, Steven M.</creator><creator>Wig, Gagan S.</creator><creator>Barnes, Kelly Anne</creator><creator>Church, Jessica A.</creator><creator>Vogel, Alecia C.</creator><creator>Laumann, Timothy O.</creator><creator>Miezin, Fran M.</creator><creator>Schlaggar, Bradley L.</creator><creator>Petersen, Steven E.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111117</creationdate><title>Functional Network Organization of the Human Brain</title><author>Power, Jonathan D. ; Cohen, Alexander L. ; Nelson, Steven M. ; Wig, Gagan S. ; Barnes, Kelly Anne ; Church, Jessica A. ; Vogel, Alecia C. ; Laumann, Timothy O. ; Miezin, Fran M. ; Schlaggar, Bradley L. ; Petersen, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-5911eac8140a3384843f6ca28f0df68d9b764256a9dd73bf979197c1afcd61b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cohort Studies</topic><topic>Data processing</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Software</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Cohen, Alexander L.</creatorcontrib><creatorcontrib>Nelson, Steven M.</creatorcontrib><creatorcontrib>Wig, Gagan S.</creatorcontrib><creatorcontrib>Barnes, Kelly Anne</creatorcontrib><creatorcontrib>Church, Jessica A.</creatorcontrib><creatorcontrib>Vogel, Alecia C.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Miezin, Fran M.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, Jonathan D.</au><au>Cohen, Alexander L.</au><au>Nelson, Steven M.</au><au>Wig, Gagan S.</au><au>Barnes, Kelly Anne</au><au>Church, Jessica A.</au><au>Vogel, Alecia C.</au><au>Laumann, Timothy O.</au><au>Miezin, Fran M.</au><au>Schlaggar, Bradley L.</au><au>Petersen, Steven E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Network Organization of the Human Brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2011-11-17</date><risdate>2011</risdate><volume>72</volume><issue>4</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.
[Display omitted]
► Areal and modified voxelwise graph definitions are proposed ► Subgraphs reflect known and unknown brain systems ► Default mode, sensory, and motor systems share network properties ► Functional systems are patterned across the cortex with spatial regularities</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22099467</pmid><doi>10.1016/j.neuron.2011.09.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2011-11, Vol.72 (4), p.665-678 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3222858 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Algorithms Brain Brain - cytology Brain - physiology Brain Mapping - methods Cohort Studies Data processing Female Humans Magnetic Resonance Imaging - methods Male Nerve Net - cytology Nerve Net - physiology Psychomotor Performance - physiology Software Young Adult |
title | Functional Network Organization of the Human Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Network%20Organization%20of%20the%20Human%20Brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Power,%20Jonathan%C2%A0D.&rft.date=2011-11-17&rft.volume=72&rft.issue=4&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2011.09.006&rft_dat=%3Cproquest_pubme%3E911168302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512606361&rft_id=info:pmid/22099467&rft_els_id=S0896627311007926&rfr_iscdi=true |