Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop

Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2011-09, Vol.146 (6), p.992-1003
Hauptverfasser: Yang, Yunlei, Atasoy, Deniz, Su, Helen H., Sternson, Scott M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 6
container_start_page 992
container_title Cell
container_volume 146
creator Yang, Yunlei
Atasoy, Deniz
Su, Helen H.
Sternson, Scott M.
description Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels. [Display omitted] ► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca 2+ signaling.
doi_str_mv 10.1016/j.cell.2011.07.039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867411008828</els_id><sourcerecordid>2000047384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</originalsourceid><addsrcrecordid>eNqFkU1v1DAYhC0EokvhD3AA3-CS4I8ktiWEVC0sRWxFpaVny3HebL1k42Ani_bf42hLBZdy8uF9ZjSeQeglJTkltHq3yy10Xc4IpTkROeHqEVpQokRWUMEeowUhimWyEsUZehbjjhAiy7J8is4YVazkjCxQczn1Wwh4M5oRIt78cqO9xQavOjdkq84P-Ar2Phzx0gU7uREfnEnnzbE3w-gsvri6_pp9hAH6BvoRX_voRncAvAJoamN_4LX3w3P0pDVdhBd37zm6WX36vrzM1t8-f1lerDNbUTJmDBpBi4bXVArLJJWsFYXkVjZcKAMMyqotC6a4atsKKlpXLefMNlzWtm4l4efow8l3mOo9NDYlCqbTQ3B7E47aG6f_vfTuVm_9QacqVEloMnhzZxD8zwniqPcuziWbHvwUtVRMFaJQIpFvHyRZKpsUgsviv2hajBeMV4InlJ1QG3yMAdr77JToeXO907NSz5trInTaPIle_f3re8mfkRPw-gS0xmuzDS7qm01yqFJESgibLd6fCEjrHBwEHa2D3kLjAthRN949lOA3pnHFww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093423673</pqid></control><display><type>article</type><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</creator><creatorcontrib>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</creatorcontrib><description>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels. [Display omitted] ► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca 2+ signaling.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2011.07.039</identifier><identifier>PMID: 21925320</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agouti-Related Protein - metabolism ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Analgesics, Opioid - metabolism ; Animals ; Calcium - metabolism ; Chromosome Pairing ; Dietary restrictions ; electrophysiology ; Energy ; Feedback ; Feedback, Physiological ; food deprivation ; Genetics ; ghrelin ; Ghrelin - metabolism ; glutamic acid ; Hormones ; Hunger ; hysteresis ; Information processing ; leptin ; Memory ; Mice ; Mice, Transgenic ; Neural networks ; Neuronal Plasticity ; Neurons ; Neurons - metabolism ; Opioids ; Optics ; optogenetics ; physiological state ; plasticity ; Plasticity (synaptic) ; Potentiation ; Pro-Opiomelanocortin - metabolism ; Proopiomelanocortin ; protein kinase ; Ryanodine - metabolism ; Signal Transduction ; Synapses</subject><ispartof>Cell, 2011-09, Vol.146 (6), p.992-1003</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</citedby><cites>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867411008828$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21925320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yunlei</creatorcontrib><creatorcontrib>Atasoy, Deniz</creatorcontrib><creatorcontrib>Su, Helen H.</creatorcontrib><creatorcontrib>Sternson, Scott M.</creatorcontrib><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><title>Cell</title><addtitle>Cell</addtitle><description>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels. [Display omitted] ► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca 2+ signaling.</description><subject>Agouti-Related Protein - metabolism</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Analgesics, Opioid - metabolism</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Chromosome Pairing</subject><subject>Dietary restrictions</subject><subject>electrophysiology</subject><subject>Energy</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>food deprivation</subject><subject>Genetics</subject><subject>ghrelin</subject><subject>Ghrelin - metabolism</subject><subject>glutamic acid</subject><subject>Hormones</subject><subject>Hunger</subject><subject>hysteresis</subject><subject>Information processing</subject><subject>leptin</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural networks</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Opioids</subject><subject>Optics</subject><subject>optogenetics</subject><subject>physiological state</subject><subject>plasticity</subject><subject>Plasticity (synaptic)</subject><subject>Potentiation</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Proopiomelanocortin</subject><subject>protein kinase</subject><subject>Ryanodine - metabolism</subject><subject>Signal Transduction</subject><subject>Synapses</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAYhC0EokvhD3AA3-CS4I8ktiWEVC0sRWxFpaVny3HebL1k42Ani_bf42hLBZdy8uF9ZjSeQeglJTkltHq3yy10Xc4IpTkROeHqEVpQokRWUMEeowUhimWyEsUZehbjjhAiy7J8is4YVazkjCxQczn1Wwh4M5oRIt78cqO9xQavOjdkq84P-Ar2Phzx0gU7uREfnEnnzbE3w-gsvri6_pp9hAH6BvoRX_voRncAvAJoamN_4LX3w3P0pDVdhBd37zm6WX36vrzM1t8-f1lerDNbUTJmDBpBi4bXVArLJJWsFYXkVjZcKAMMyqotC6a4atsKKlpXLefMNlzWtm4l4efow8l3mOo9NDYlCqbTQ3B7E47aG6f_vfTuVm_9QacqVEloMnhzZxD8zwniqPcuziWbHvwUtVRMFaJQIpFvHyRZKpsUgsviv2hajBeMV4InlJ1QG3yMAdr77JToeXO907NSz5trInTaPIle_f3re8mfkRPw-gS0xmuzDS7qm01yqFJESgibLd6fCEjrHBwEHa2D3kLjAthRN949lOA3pnHFww</recordid><startdate>20110916</startdate><enddate>20110916</enddate><creator>Yang, Yunlei</creator><creator>Atasoy, Deniz</creator><creator>Su, Helen H.</creator><creator>Sternson, Scott M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110916</creationdate><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><author>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agouti-Related Protein - metabolism</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Analgesics, Opioid - metabolism</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Chromosome Pairing</topic><topic>Dietary restrictions</topic><topic>electrophysiology</topic><topic>Energy</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>food deprivation</topic><topic>Genetics</topic><topic>ghrelin</topic><topic>Ghrelin - metabolism</topic><topic>glutamic acid</topic><topic>Hormones</topic><topic>Hunger</topic><topic>hysteresis</topic><topic>Information processing</topic><topic>leptin</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural networks</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Opioids</topic><topic>Optics</topic><topic>optogenetics</topic><topic>physiological state</topic><topic>plasticity</topic><topic>Plasticity (synaptic)</topic><topic>Potentiation</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Proopiomelanocortin</topic><topic>protein kinase</topic><topic>Ryanodine - metabolism</topic><topic>Signal Transduction</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yunlei</creatorcontrib><creatorcontrib>Atasoy, Deniz</creatorcontrib><creatorcontrib>Su, Helen H.</creatorcontrib><creatorcontrib>Sternson, Scott M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yunlei</au><au>Atasoy, Deniz</au><au>Su, Helen H.</au><au>Sternson, Scott M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2011-09-16</date><risdate>2011</risdate><volume>146</volume><issue>6</issue><spage>992</spage><epage>1003</epage><pages>992-1003</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels. [Display omitted] ► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca 2+ signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21925320</pmid><doi>10.1016/j.cell.2011.07.039</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2011-09, Vol.146 (6), p.992-1003
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209501
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agouti-Related Protein - metabolism
AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Analgesics, Opioid - metabolism
Animals
Calcium - metabolism
Chromosome Pairing
Dietary restrictions
electrophysiology
Energy
Feedback
Feedback, Physiological
food deprivation
Genetics
ghrelin
Ghrelin - metabolism
glutamic acid
Hormones
Hunger
hysteresis
Information processing
leptin
Memory
Mice
Mice, Transgenic
Neural networks
Neuronal Plasticity
Neurons
Neurons - metabolism
Opioids
Optics
optogenetics
physiological state
plasticity
Plasticity (synaptic)
Potentiation
Pro-Opiomelanocortin - metabolism
Proopiomelanocortin
protein kinase
Ryanodine - metabolism
Signal Transduction
Synapses
title Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hunger%20States%20Switch%20a%20Flip-Flop%20Memory%20Circuit%20via%20a%20Synaptic%20AMPK-Dependent%20Positive%20Feedback%20Loop&rft.jtitle=Cell&rft.au=Yang,%20Yunlei&rft.date=2011-09-16&rft.volume=146&rft.issue=6&rft.spage=992&rft.epage=1003&rft.pages=992-1003&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2011.07.039&rft_dat=%3Cproquest_pubme%3E2000047384%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093423673&rft_id=info:pmid/21925320&rft_els_id=S0092867411008828&rfr_iscdi=true