Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop
Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling...
Gespeichert in:
Veröffentlicht in: | Cell 2011-09, Vol.146 (6), p.992-1003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 6 |
container_start_page | 992 |
container_title | Cell |
container_volume | 146 |
creator | Yang, Yunlei Atasoy, Deniz Su, Helen H. Sternson, Scott M. |
description | Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels.
[Display omitted]
► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits
Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca
2+ signaling. |
doi_str_mv | 10.1016/j.cell.2011.07.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867411008828</els_id><sourcerecordid>2000047384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</originalsourceid><addsrcrecordid>eNqFkU1v1DAYhC0EokvhD3AA3-CS4I8ktiWEVC0sRWxFpaVny3HebL1k42Ani_bf42hLBZdy8uF9ZjSeQeglJTkltHq3yy10Xc4IpTkROeHqEVpQokRWUMEeowUhimWyEsUZehbjjhAiy7J8is4YVazkjCxQczn1Wwh4M5oRIt78cqO9xQavOjdkq84P-Ar2Phzx0gU7uREfnEnnzbE3w-gsvri6_pp9hAH6BvoRX_voRncAvAJoamN_4LX3w3P0pDVdhBd37zm6WX36vrzM1t8-f1lerDNbUTJmDBpBi4bXVArLJJWsFYXkVjZcKAMMyqotC6a4atsKKlpXLefMNlzWtm4l4efow8l3mOo9NDYlCqbTQ3B7E47aG6f_vfTuVm_9QacqVEloMnhzZxD8zwniqPcuziWbHvwUtVRMFaJQIpFvHyRZKpsUgsviv2hajBeMV4InlJ1QG3yMAdr77JToeXO907NSz5trInTaPIle_f3re8mfkRPw-gS0xmuzDS7qm01yqFJESgibLd6fCEjrHBwEHa2D3kLjAthRN949lOA3pnHFww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093423673</pqid></control><display><type>article</type><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</creator><creatorcontrib>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</creatorcontrib><description>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels.
[Display omitted]
► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits
Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca
2+ signaling.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2011.07.039</identifier><identifier>PMID: 21925320</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agouti-Related Protein - metabolism ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Analgesics, Opioid - metabolism ; Animals ; Calcium - metabolism ; Chromosome Pairing ; Dietary restrictions ; electrophysiology ; Energy ; Feedback ; Feedback, Physiological ; food deprivation ; Genetics ; ghrelin ; Ghrelin - metabolism ; glutamic acid ; Hormones ; Hunger ; hysteresis ; Information processing ; leptin ; Memory ; Mice ; Mice, Transgenic ; Neural networks ; Neuronal Plasticity ; Neurons ; Neurons - metabolism ; Opioids ; Optics ; optogenetics ; physiological state ; plasticity ; Plasticity (synaptic) ; Potentiation ; Pro-Opiomelanocortin - metabolism ; Proopiomelanocortin ; protein kinase ; Ryanodine - metabolism ; Signal Transduction ; Synapses</subject><ispartof>Cell, 2011-09, Vol.146 (6), p.992-1003</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</citedby><cites>FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867411008828$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21925320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yunlei</creatorcontrib><creatorcontrib>Atasoy, Deniz</creatorcontrib><creatorcontrib>Su, Helen H.</creatorcontrib><creatorcontrib>Sternson, Scott M.</creatorcontrib><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><title>Cell</title><addtitle>Cell</addtitle><description>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels.
[Display omitted]
► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits
Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca
2+ signaling.</description><subject>Agouti-Related Protein - metabolism</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Analgesics, Opioid - metabolism</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Chromosome Pairing</subject><subject>Dietary restrictions</subject><subject>electrophysiology</subject><subject>Energy</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>food deprivation</subject><subject>Genetics</subject><subject>ghrelin</subject><subject>Ghrelin - metabolism</subject><subject>glutamic acid</subject><subject>Hormones</subject><subject>Hunger</subject><subject>hysteresis</subject><subject>Information processing</subject><subject>leptin</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural networks</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Opioids</subject><subject>Optics</subject><subject>optogenetics</subject><subject>physiological state</subject><subject>plasticity</subject><subject>Plasticity (synaptic)</subject><subject>Potentiation</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Proopiomelanocortin</subject><subject>protein kinase</subject><subject>Ryanodine - metabolism</subject><subject>Signal Transduction</subject><subject>Synapses</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAYhC0EokvhD3AA3-CS4I8ktiWEVC0sRWxFpaVny3HebL1k42Ani_bf42hLBZdy8uF9ZjSeQeglJTkltHq3yy10Xc4IpTkROeHqEVpQokRWUMEeowUhimWyEsUZehbjjhAiy7J8is4YVazkjCxQczn1Wwh4M5oRIt78cqO9xQavOjdkq84P-Ar2Phzx0gU7uREfnEnnzbE3w-gsvri6_pp9hAH6BvoRX_voRncAvAJoamN_4LX3w3P0pDVdhBd37zm6WX36vrzM1t8-f1lerDNbUTJmDBpBi4bXVArLJJWsFYXkVjZcKAMMyqotC6a4atsKKlpXLefMNlzWtm4l4efow8l3mOo9NDYlCqbTQ3B7E47aG6f_vfTuVm_9QacqVEloMnhzZxD8zwniqPcuziWbHvwUtVRMFaJQIpFvHyRZKpsUgsviv2hajBeMV4InlJ1QG3yMAdr77JToeXO907NSz5trInTaPIle_f3re8mfkRPw-gS0xmuzDS7qm01yqFJESgibLd6fCEjrHBwEHa2D3kLjAthRN949lOA3pnHFww</recordid><startdate>20110916</startdate><enddate>20110916</enddate><creator>Yang, Yunlei</creator><creator>Atasoy, Deniz</creator><creator>Su, Helen H.</creator><creator>Sternson, Scott M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110916</creationdate><title>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</title><author>Yang, Yunlei ; Atasoy, Deniz ; Su, Helen H. ; Sternson, Scott M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-2ed714d3b187c28182f7483c8d379ae2e56f542939ff6e61b6f332cd38bcbf803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agouti-Related Protein - metabolism</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Analgesics, Opioid - metabolism</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Chromosome Pairing</topic><topic>Dietary restrictions</topic><topic>electrophysiology</topic><topic>Energy</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>food deprivation</topic><topic>Genetics</topic><topic>ghrelin</topic><topic>Ghrelin - metabolism</topic><topic>glutamic acid</topic><topic>Hormones</topic><topic>Hunger</topic><topic>hysteresis</topic><topic>Information processing</topic><topic>leptin</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural networks</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Opioids</topic><topic>Optics</topic><topic>optogenetics</topic><topic>physiological state</topic><topic>plasticity</topic><topic>Plasticity (synaptic)</topic><topic>Potentiation</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Proopiomelanocortin</topic><topic>protein kinase</topic><topic>Ryanodine - metabolism</topic><topic>Signal Transduction</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yunlei</creatorcontrib><creatorcontrib>Atasoy, Deniz</creatorcontrib><creatorcontrib>Su, Helen H.</creatorcontrib><creatorcontrib>Sternson, Scott M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yunlei</au><au>Atasoy, Deniz</au><au>Su, Helen H.</au><au>Sternson, Scott M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2011-09-16</date><risdate>2011</risdate><volume>146</volume><issue>6</issue><spage>992</spage><epage>1003</epage><pages>992-1003</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Synaptic plasticity in response to changes in physiologic state is coordinated by hormonal signals across multiple neuronal cell types. Here, we combine cell-type-specific electrophysiological, pharmacological, and optogenetic techniques to dissect neural circuits and molecular pathways controlling synaptic plasticity onto AGRP neurons, a population that regulates feeding. We find that food deprivation elevates excitatory synaptic input, which is mediated by a presynaptic positive feedback loop involving AMP-activated protein kinase. Potentiation of glutamate release was triggered by the orexigenic hormone ghrelin and exhibited hysteresis, persisting for hours after ghrelin removal. Persistent activity was reversed by the anorexigenic hormone leptin, and optogenetic photostimulation demonstrated involvement of opioid release from POMC neurons. Based on these experiments, we propose a memory storage device for physiological state constructed from bistable synapses that are flipped between two sustained activity states by transient exposure to hormones signaling energy levels.
[Display omitted]
► Ghrelin and food deprivation induce synaptic plasticity at AGRP neurons ► An AMPK-dependent positive feedback loop results in synapse bistability ► Leptin and POMC opioids switch off AMPK, positive feedback, and persistent activity ► Bistable synapses can store a reversible memory of hormonal state in hunger circuits
Hunger stimulates synaptic activity that drives feeding behavior and continues until leptin signals satiety. This persistent synaptic activity is driven by a positive feedback loop of AMPK and Ca
2+ signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21925320</pmid><doi>10.1016/j.cell.2011.07.039</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2011-09, Vol.146 (6), p.992-1003 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209501 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agouti-Related Protein - metabolism AMP-activated protein kinase AMP-Activated Protein Kinases - metabolism Analgesics, Opioid - metabolism Animals Calcium - metabolism Chromosome Pairing Dietary restrictions electrophysiology Energy Feedback Feedback, Physiological food deprivation Genetics ghrelin Ghrelin - metabolism glutamic acid Hormones Hunger hysteresis Information processing leptin Memory Mice Mice, Transgenic Neural networks Neuronal Plasticity Neurons Neurons - metabolism Opioids Optics optogenetics physiological state plasticity Plasticity (synaptic) Potentiation Pro-Opiomelanocortin - metabolism Proopiomelanocortin protein kinase Ryanodine - metabolism Signal Transduction Synapses |
title | Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hunger%20States%20Switch%20a%20Flip-Flop%20Memory%20Circuit%20via%20a%20Synaptic%20AMPK-Dependent%20Positive%20Feedback%20Loop&rft.jtitle=Cell&rft.au=Yang,%20Yunlei&rft.date=2011-09-16&rft.volume=146&rft.issue=6&rft.spage=992&rft.epage=1003&rft.pages=992-1003&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2011.07.039&rft_dat=%3Cproquest_pubme%3E2000047384%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093423673&rft_id=info:pmid/21925320&rft_els_id=S0092867411008828&rfr_iscdi=true |