Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls

► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2011-10, Vol.85 (3), p.386-392
Hauptverfasser: Song, Yang, Ambati, Jyothirmai, Parkin, Sean, Rankin, Stephen E., Robertson, Larry W., Lehmler, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue 3
container_start_page 386
container_title Chemosphere (Oxford)
container_volume 85
creator Song, Yang
Ambati, Jyothirmai
Parkin, Sean
Rankin, Stephen E.
Robertson, Larry W.
Lehmler, Hans-Joachim
description ► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches. Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.
doi_str_mv 10.1016/j.chemosphere.2011.07.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3206982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653511008034</els_id><sourcerecordid>1365038691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEokvhL6BwQPSSYMeJE1-Q0IoCUiUucLa84wnxyrF3badq_j2udinlgjhZ8nzv6c28onhDSU0J5e_3NUw4-3iYMGDdEEpr0teEtE-KDR16UdFGDE-LTf7pKt6x7qJ4EeOekCzuxPPioqFD03ImNsVxG9aYlC1jCgukJWCpnC41umjSWo6Lg2S8y0Ca0Ic1c4s2GEs_lsnfGSiPi3HeYTljUjtvTToND96uMFkfjFMJdbkzOa1bbXxZPBuVjfjq_F4WP64_fd9-qW6-ff66_XhTQdf3qRqJorQbAaDnKFoEATgCRWi54KCHVjMEPTIlWjI2jAIbBtHppu055I0Juyw-nHwPy25GDehSUFYegplVWKVXRv49cWaSP_2tZA3hYmiywbuzQfDHBWOSs4mA1iqHfolScDbwhvV9Jq_-SVLGc6CBC5pRcUIh-BgDjg-BKJH35cq9fFSuvC9Xkl7mKrP29eONHpS_28zA2zOgIig7BuXAxD9c2zeCki5z2xOH-f63BoOMYNABahMQktTe_EecX1bRzd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365038691</pqid></control><display><type>article</type><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</creator><creatorcontrib>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</creatorcontrib><description>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches. Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2011.07.004</identifier><identifier>PMID: 21824639</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air. Soil. Water. Waste. Feeding ; Applied sciences ; Benzoquinones ; Benzoquinones - chemical synthesis ; Benzoquinones - chemistry ; Benzoquinones - toxicity ; biochemical mechanisms ; Biological and medical sciences ; Bonding ; Cellular ; chemical synthesis ; chemistry ; chlorine ; crystal structure ; Crystallography, X-Ray ; Dihedral angle ; Environment. Living conditions ; enzymes ; Exact sciences and technology ; gases ; Global environmental pollution ; Ground state energies ; Mathematical analysis ; Medical sciences ; metabolism ; Metabolite ; Metabolites ; Molecular Conformation ; Molecular structure ; Pollution ; Polychlorinated biphenyls ; Polychlorinated Biphenyls - metabolism ; prediction ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Quantum Theory ; Quinone ; Quinones ; receptors ; risk ; Solid state ; Solid state structure ; Thermodynamics ; toxicity</subject><ispartof>Chemosphere (Oxford), 2011-10, Vol.85 (3), p.386-392</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>2011 Elsevier Ltd. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</citedby><cites>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653511008034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24729105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21824639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ambati, Jyothirmai</creatorcontrib><creatorcontrib>Parkin, Sean</creatorcontrib><creatorcontrib>Rankin, Stephen E.</creatorcontrib><creatorcontrib>Robertson, Larry W.</creatorcontrib><creatorcontrib>Lehmler, Hans-Joachim</creatorcontrib><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches. Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</description><subject>Air. Soil. Water. Waste. Feeding</subject><subject>Applied sciences</subject><subject>Benzoquinones</subject><subject>Benzoquinones - chemical synthesis</subject><subject>Benzoquinones - chemistry</subject><subject>Benzoquinones - toxicity</subject><subject>biochemical mechanisms</subject><subject>Biological and medical sciences</subject><subject>Bonding</subject><subject>Cellular</subject><subject>chemical synthesis</subject><subject>chemistry</subject><subject>chlorine</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dihedral angle</subject><subject>Environment. Living conditions</subject><subject>enzymes</subject><subject>Exact sciences and technology</subject><subject>gases</subject><subject>Global environmental pollution</subject><subject>Ground state energies</subject><subject>Mathematical analysis</subject><subject>Medical sciences</subject><subject>metabolism</subject><subject>Metabolite</subject><subject>Metabolites</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>Pollution</subject><subject>Polychlorinated biphenyls</subject><subject>Polychlorinated Biphenyls - metabolism</subject><subject>prediction</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Quantum Theory</subject><subject>Quinone</subject><subject>Quinones</subject><subject>receptors</subject><subject>risk</subject><subject>Solid state</subject><subject>Solid state structure</subject><subject>Thermodynamics</subject><subject>toxicity</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhSMEokvhL6BwQPSSYMeJE1-Q0IoCUiUucLa84wnxyrF3badq_j2udinlgjhZ8nzv6c28onhDSU0J5e_3NUw4-3iYMGDdEEpr0teEtE-KDR16UdFGDE-LTf7pKt6x7qJ4EeOekCzuxPPioqFD03ImNsVxG9aYlC1jCgukJWCpnC41umjSWo6Lg2S8y0Ca0Ic1c4s2GEs_lsnfGSiPi3HeYTljUjtvTToND96uMFkfjFMJdbkzOa1bbXxZPBuVjfjq_F4WP64_fd9-qW6-ff66_XhTQdf3qRqJorQbAaDnKFoEATgCRWi54KCHVjMEPTIlWjI2jAIbBtHppu055I0Juyw-nHwPy25GDehSUFYegplVWKVXRv49cWaSP_2tZA3hYmiywbuzQfDHBWOSs4mA1iqHfolScDbwhvV9Jq_-SVLGc6CBC5pRcUIh-BgDjg-BKJH35cq9fFSuvC9Xkl7mKrP29eONHpS_28zA2zOgIig7BuXAxD9c2zeCki5z2xOH-f63BoOMYNABahMQktTe_EecX1bRzd8</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Song, Yang</creator><creator>Ambati, Jyothirmai</creator><creator>Parkin, Sean</creator><creator>Rankin, Stephen E.</creator><creator>Robertson, Larry W.</creator><creator>Lehmler, Hans-Joachim</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><author>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air. Soil. Water. Waste. Feeding</topic><topic>Applied sciences</topic><topic>Benzoquinones</topic><topic>Benzoquinones - chemical synthesis</topic><topic>Benzoquinones - chemistry</topic><topic>Benzoquinones - toxicity</topic><topic>biochemical mechanisms</topic><topic>Biological and medical sciences</topic><topic>Bonding</topic><topic>Cellular</topic><topic>chemical synthesis</topic><topic>chemistry</topic><topic>chlorine</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dihedral angle</topic><topic>Environment. Living conditions</topic><topic>enzymes</topic><topic>Exact sciences and technology</topic><topic>gases</topic><topic>Global environmental pollution</topic><topic>Ground state energies</topic><topic>Mathematical analysis</topic><topic>Medical sciences</topic><topic>metabolism</topic><topic>Metabolite</topic><topic>Metabolites</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>Pollution</topic><topic>Polychlorinated biphenyls</topic><topic>Polychlorinated Biphenyls - metabolism</topic><topic>prediction</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Quantum Theory</topic><topic>Quinone</topic><topic>Quinones</topic><topic>receptors</topic><topic>risk</topic><topic>Solid state</topic><topic>Solid state structure</topic><topic>Thermodynamics</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ambati, Jyothirmai</creatorcontrib><creatorcontrib>Parkin, Sean</creatorcontrib><creatorcontrib>Rankin, Stephen E.</creatorcontrib><creatorcontrib>Robertson, Larry W.</creatorcontrib><creatorcontrib>Lehmler, Hans-Joachim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Ambati, Jyothirmai</au><au>Parkin, Sean</au><au>Rankin, Stephen E.</au><au>Robertson, Larry W.</au><au>Lehmler, Hans-Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>85</volume><issue>3</issue><spage>386</spage><epage>392</epage><pages>386-392</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches. Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21824639</pmid><doi>10.1016/j.chemosphere.2011.07.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2011-10, Vol.85 (3), p.386-392
issn 0045-6535
1879-1298
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3206982
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Air. Soil. Water. Waste. Feeding
Applied sciences
Benzoquinones
Benzoquinones - chemical synthesis
Benzoquinones - chemistry
Benzoquinones - toxicity
biochemical mechanisms
Biological and medical sciences
Bonding
Cellular
chemical synthesis
chemistry
chlorine
crystal structure
Crystallography, X-Ray
Dihedral angle
Environment. Living conditions
enzymes
Exact sciences and technology
gases
Global environmental pollution
Ground state energies
Mathematical analysis
Medical sciences
metabolism
Metabolite
Metabolites
Molecular Conformation
Molecular structure
Pollution
Polychlorinated biphenyls
Polychlorinated Biphenyls - metabolism
prediction
Public health. Hygiene
Public health. Hygiene-occupational medicine
Quantum Theory
Quinone
Quinones
receptors
risk
Solid state
Solid state structure
Thermodynamics
toxicity
title Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20and%20density%20functional%20theory%20studies%20of%20toxic%20quinone%20metabolites%20of%20polychlorinated%20biphenyls&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Song,%20Yang&rft.date=2011-10-01&rft.volume=85&rft.issue=3&rft.spage=386&rft.epage=392&rft.pages=386-392&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2011.07.004&rft_dat=%3Cproquest_pubme%3E1365038691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365038691&rft_id=info:pmid/21824639&rft_els_id=S0045653511008034&rfr_iscdi=true