Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls
► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure o...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2011-10, Vol.85 (3), p.386-392 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | 3 |
container_start_page | 386 |
container_title | Chemosphere (Oxford) |
container_volume | 85 |
creator | Song, Yang Ambati, Jyothirmai Parkin, Sean Rankin, Stephen E. Robertson, Larry W. Lehmler, Hans-Joachim |
description | ► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches.
Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity. |
doi_str_mv | 10.1016/j.chemosphere.2011.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3206982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653511008034</els_id><sourcerecordid>1365038691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEokvhL6BwQPSSYMeJE1-Q0IoCUiUucLa84wnxyrF3badq_j2udinlgjhZ8nzv6c28onhDSU0J5e_3NUw4-3iYMGDdEEpr0teEtE-KDR16UdFGDE-LTf7pKt6x7qJ4EeOekCzuxPPioqFD03ImNsVxG9aYlC1jCgukJWCpnC41umjSWo6Lg2S8y0Ca0Ic1c4s2GEs_lsnfGSiPi3HeYTljUjtvTToND96uMFkfjFMJdbkzOa1bbXxZPBuVjfjq_F4WP64_fd9-qW6-ff66_XhTQdf3qRqJorQbAaDnKFoEATgCRWi54KCHVjMEPTIlWjI2jAIbBtHppu055I0Juyw-nHwPy25GDehSUFYegplVWKVXRv49cWaSP_2tZA3hYmiywbuzQfDHBWOSs4mA1iqHfolScDbwhvV9Jq_-SVLGc6CBC5pRcUIh-BgDjg-BKJH35cq9fFSuvC9Xkl7mKrP29eONHpS_28zA2zOgIig7BuXAxD9c2zeCki5z2xOH-f63BoOMYNABahMQktTe_EecX1bRzd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365038691</pqid></control><display><type>article</type><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</creator><creatorcontrib>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</creatorcontrib><description>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches.
Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2011.07.004</identifier><identifier>PMID: 21824639</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air. Soil. Water. Waste. Feeding ; Applied sciences ; Benzoquinones ; Benzoquinones - chemical synthesis ; Benzoquinones - chemistry ; Benzoquinones - toxicity ; biochemical mechanisms ; Biological and medical sciences ; Bonding ; Cellular ; chemical synthesis ; chemistry ; chlorine ; crystal structure ; Crystallography, X-Ray ; Dihedral angle ; Environment. Living conditions ; enzymes ; Exact sciences and technology ; gases ; Global environmental pollution ; Ground state energies ; Mathematical analysis ; Medical sciences ; metabolism ; Metabolite ; Metabolites ; Molecular Conformation ; Molecular structure ; Pollution ; Polychlorinated biphenyls ; Polychlorinated Biphenyls - metabolism ; prediction ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Quantum Theory ; Quinone ; Quinones ; receptors ; risk ; Solid state ; Solid state structure ; Thermodynamics ; toxicity</subject><ispartof>Chemosphere (Oxford), 2011-10, Vol.85 (3), p.386-392</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><rights>2011 Elsevier Ltd. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</citedby><cites>FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653511008034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24729105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21824639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ambati, Jyothirmai</creatorcontrib><creatorcontrib>Parkin, Sean</creatorcontrib><creatorcontrib>Rankin, Stephen E.</creatorcontrib><creatorcontrib>Robertson, Larry W.</creatorcontrib><creatorcontrib>Lehmler, Hans-Joachim</creatorcontrib><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches.
Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</description><subject>Air. Soil. Water. Waste. Feeding</subject><subject>Applied sciences</subject><subject>Benzoquinones</subject><subject>Benzoquinones - chemical synthesis</subject><subject>Benzoquinones - chemistry</subject><subject>Benzoquinones - toxicity</subject><subject>biochemical mechanisms</subject><subject>Biological and medical sciences</subject><subject>Bonding</subject><subject>Cellular</subject><subject>chemical synthesis</subject><subject>chemistry</subject><subject>chlorine</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dihedral angle</subject><subject>Environment. Living conditions</subject><subject>enzymes</subject><subject>Exact sciences and technology</subject><subject>gases</subject><subject>Global environmental pollution</subject><subject>Ground state energies</subject><subject>Mathematical analysis</subject><subject>Medical sciences</subject><subject>metabolism</subject><subject>Metabolite</subject><subject>Metabolites</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>Pollution</subject><subject>Polychlorinated biphenyls</subject><subject>Polychlorinated Biphenyls - metabolism</subject><subject>prediction</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Quantum Theory</subject><subject>Quinone</subject><subject>Quinones</subject><subject>receptors</subject><subject>risk</subject><subject>Solid state</subject><subject>Solid state structure</subject><subject>Thermodynamics</subject><subject>toxicity</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhSMEokvhL6BwQPSSYMeJE1-Q0IoCUiUucLa84wnxyrF3badq_j2udinlgjhZ8nzv6c28onhDSU0J5e_3NUw4-3iYMGDdEEpr0teEtE-KDR16UdFGDE-LTf7pKt6x7qJ4EeOekCzuxPPioqFD03ImNsVxG9aYlC1jCgukJWCpnC41umjSWo6Lg2S8y0Ca0Ic1c4s2GEs_lsnfGSiPi3HeYTljUjtvTToND96uMFkfjFMJdbkzOa1bbXxZPBuVjfjq_F4WP64_fd9-qW6-ff66_XhTQdf3qRqJorQbAaDnKFoEATgCRWi54KCHVjMEPTIlWjI2jAIbBtHppu055I0Juyw-nHwPy25GDehSUFYegplVWKVXRv49cWaSP_2tZA3hYmiywbuzQfDHBWOSs4mA1iqHfolScDbwhvV9Jq_-SVLGc6CBC5pRcUIh-BgDjg-BKJH35cq9fFSuvC9Xkl7mKrP29eONHpS_28zA2zOgIig7BuXAxD9c2zeCki5z2xOH-f63BoOMYNABahMQktTe_EecX1bRzd8</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Song, Yang</creator><creator>Ambati, Jyothirmai</creator><creator>Parkin, Sean</creator><creator>Rankin, Stephen E.</creator><creator>Robertson, Larry W.</creator><creator>Lehmler, Hans-Joachim</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</title><author>Song, Yang ; Ambati, Jyothirmai ; Parkin, Sean ; Rankin, Stephen E. ; Robertson, Larry W. ; Lehmler, Hans-Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-f0a115fccc76e94ec9cefc1ec4696cd84d3ecdf3a940f231c38895d2476c53503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air. Soil. Water. Waste. Feeding</topic><topic>Applied sciences</topic><topic>Benzoquinones</topic><topic>Benzoquinones - chemical synthesis</topic><topic>Benzoquinones - chemistry</topic><topic>Benzoquinones - toxicity</topic><topic>biochemical mechanisms</topic><topic>Biological and medical sciences</topic><topic>Bonding</topic><topic>Cellular</topic><topic>chemical synthesis</topic><topic>chemistry</topic><topic>chlorine</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dihedral angle</topic><topic>Environment. Living conditions</topic><topic>enzymes</topic><topic>Exact sciences and technology</topic><topic>gases</topic><topic>Global environmental pollution</topic><topic>Ground state energies</topic><topic>Mathematical analysis</topic><topic>Medical sciences</topic><topic>metabolism</topic><topic>Metabolite</topic><topic>Metabolites</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>Pollution</topic><topic>Polychlorinated biphenyls</topic><topic>Polychlorinated Biphenyls - metabolism</topic><topic>prediction</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Quantum Theory</topic><topic>Quinone</topic><topic>Quinones</topic><topic>receptors</topic><topic>risk</topic><topic>Solid state</topic><topic>Solid state structure</topic><topic>Thermodynamics</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Ambati, Jyothirmai</creatorcontrib><creatorcontrib>Parkin, Sean</creatorcontrib><creatorcontrib>Rankin, Stephen E.</creatorcontrib><creatorcontrib>Robertson, Larry W.</creatorcontrib><creatorcontrib>Lehmler, Hans-Joachim</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yang</au><au>Ambati, Jyothirmai</au><au>Parkin, Sean</au><au>Rankin, Stephen E.</au><au>Robertson, Larry W.</au><au>Lehmler, Hans-Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>85</volume><issue>3</issue><spage>386</spage><epage>392</epage><pages>386-392</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>► Structure predictions of PCB quinones are of interest for toxicological studies. ► The inter-ring C1–C1′ bond is weakened by ortho chlorine substituents. ► Ortho chlorines increased the dihedral angle of PCB quinones. ► UB3LYP/6-311G∗∗ calculations yielded the best approximation. ► The structure of PCB quinones can be predicted using computational approaches.
Lower chlorinated polychlorinated biphenyls (PCBs) are readily metabolized via hydroxylated metabolites to reactive PCB quinones. Although these PCB metabolites elicit biochemical changes by mechanisms involving cellular target molecules, such as the aryl hydrocarbon receptor, and toxicity by interacting with enzymes like topoisomerases, only few PCB quinones have been synthesized and their conformational properties investigated. Similar to the parent compounds, knowledge of the three-dimensional structure of PCB quinones may therefore be important to assess their fate and risk. To address this gap in our knowledge, the gas phase molecular structure of a series of PCB quinones was predicted using HF/3-21G, B3LYP/6-31G∗∗ and UB3LYP/6-311G∗∗ calculations and compared to the respective solid state structure. All three methods overestimated the Cl–C bond length, but otherwise provided a reasonable approximation of the solid state bond angles and bond lengths. Overall, the UB3LYP/6-311G∗∗ level of theory yielded the best approximation of the molecular structure of PCB quinones in the solid state. Chlorine addition at the ortho position of both rings was found to increase the dihedral angle of the resulting quinone compound, which may have important implications for their interaction with cellular targets and, thus, their toxicity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21824639</pmid><doi>10.1016/j.chemosphere.2011.07.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2011-10, Vol.85 (3), p.386-392 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3206982 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Air. Soil. Water. Waste. Feeding Applied sciences Benzoquinones Benzoquinones - chemical synthesis Benzoquinones - chemistry Benzoquinones - toxicity biochemical mechanisms Biological and medical sciences Bonding Cellular chemical synthesis chemistry chlorine crystal structure Crystallography, X-Ray Dihedral angle Environment. Living conditions enzymes Exact sciences and technology gases Global environmental pollution Ground state energies Mathematical analysis Medical sciences metabolism Metabolite Metabolites Molecular Conformation Molecular structure Pollution Polychlorinated biphenyls Polychlorinated Biphenyls - metabolism prediction Public health. Hygiene Public health. Hygiene-occupational medicine Quantum Theory Quinone Quinones receptors risk Solid state Solid state structure Thermodynamics toxicity |
title | Crystal structure and density functional theory studies of toxic quinone metabolites of polychlorinated biphenyls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20and%20density%20functional%20theory%20studies%20of%20toxic%20quinone%20metabolites%20of%20polychlorinated%20biphenyls&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Song,%20Yang&rft.date=2011-10-01&rft.volume=85&rft.issue=3&rft.spage=386&rft.epage=392&rft.pages=386-392&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2011.07.004&rft_dat=%3Cproquest_pubme%3E1365038691%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365038691&rft_id=info:pmid/21824639&rft_els_id=S0045653511008034&rfr_iscdi=true |