Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis
The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via cla...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2011-09, Vol.23 (9), p.3463-3481 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3481 |
---|---|
container_issue | 9 |
container_start_page | 3463 |
container_title | The Plant cell |
container_volume | 23 |
creator | Scheuring, David Viotti, Corrado Krüger, Falco Künzl, Fabian Sturm, Silke Bubeck, Julia Hillmer, Stefan Frigerio, Lorenzo Robinson, David G. Pimpl, Peter Schumacher, Karin |
description | The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole.The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole. |
doi_str_mv | 10.1105/tpc.111.086918 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434709</jstor_id><sourcerecordid>41434709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-4f9616494379db27ec60d70588f7d46cb7ae7ac2cea81e1e82fea7f2a83bc5273</originalsourceid><addsrcrecordid>eNp9kU1v1DAYhC0Eoh9w5QayuJRLtv5KbF-QSrUUpBYuRXCzHOdN6yWJF9sp6r_H0ZYVcODkkebxaOxB6AUlK0pJfZq3rgi6IqrRVD1Ch7TmrGJafXtcNBGkEk1ND9BRShtCCJVUP0UHjGouqOCH6OvVPGR_B8m7ebARvwudh4SvbJ4j4D6GEedbwNfRTqm6CMONx58g_wzx--naxuEer6cupDAC9hM-i7b1Xdgmn56hJ70dEjx_OI_Rl_fr6_MP1eXni4_nZ5eVq7nMleh1QxuhBZe6a5kE15BOklqpXnaica20IK1jDqyiQEGxHqzsmVW8dTWT_Bi93eVu53aEzsGUox3MNvrRxnsTrDd_O5O_NTfhznBGuGCsBJw8BMTwY4aUzeiTg2GwE4Q5GU0oKX3kQr75L0l5UxMmlVpavf4H3YQ5TuUjSl7DNOFkyVvtIBdDShH6fWtKzDKuKeMWQc1u3HLh1Z9v3eO_1yzAyx2wSTnEvb94QhLNfwHS6qp9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906290302</pqid></control><display><type>article</type><title>Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scheuring, David ; Viotti, Corrado ; Krüger, Falco ; Künzl, Fabian ; Sturm, Silke ; Bubeck, Julia ; Hillmer, Stefan ; Frigerio, Lorenzo ; Robinson, David G. ; Pimpl, Peter ; Schumacher, Karin</creator><creatorcontrib>Scheuring, David ; Viotti, Corrado ; Krüger, Falco ; Künzl, Fabian ; Sturm, Silke ; Bubeck, Julia ; Hillmer, Stefan ; Frigerio, Lorenzo ; Robinson, David G. ; Pimpl, Peter ; Schumacher, Karin</creatorcontrib><description>The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole.The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.111.086918</identifier><identifier>PMID: 21934143</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Annexins ; Antibodies ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis thaliana ; clathrin ; Clathrin-Coated Vesicles ; Clathrin-Coated Vesicles - metabolism ; Endocytosis ; Endosomal Sorting Complexes Required for Transport ; Endosomal Sorting Complexes Required for Transport - metabolism ; Endosomes ; Endosomes - metabolism ; Freight ; metabolism ; Multivesicular Bodies ; Multivesicular Bodies - metabolism ; Multivesicular Bodies - ultrastructure ; mutants ; phenotype ; Plant cells ; Plant Roots ; Plant Roots - metabolism ; Plasmids ; Protein Transport ; Protoplasts ; Receptors ; RNA ; roots ; trans-Golgi Network ; trans-Golgi Network - metabolism ; trans-Golgi Network - ultrastructure ; Transfection ; ultrastructure ; Vacuoles ; Vacuoles - metabolism ; Vacuoles - ultrastructure</subject><ispartof>The Plant cell, 2011-09, Vol.23 (9), p.3463-3481</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Sep 2011</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-4f9616494379db27ec60d70588f7d46cb7ae7ac2cea81e1e82fea7f2a83bc5273</citedby><cites>FETCH-LOGICAL-c537t-4f9616494379db27ec60d70588f7d46cb7ae7ac2cea81e1e82fea7f2a83bc5273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434709$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434709$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21934143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheuring, David</creatorcontrib><creatorcontrib>Viotti, Corrado</creatorcontrib><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Künzl, Fabian</creatorcontrib><creatorcontrib>Sturm, Silke</creatorcontrib><creatorcontrib>Bubeck, Julia</creatorcontrib><creatorcontrib>Hillmer, Stefan</creatorcontrib><creatorcontrib>Frigerio, Lorenzo</creatorcontrib><creatorcontrib>Robinson, David G.</creatorcontrib><creatorcontrib>Pimpl, Peter</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><title>Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole.The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.</description><subject>Annexins</subject><subject>Antibodies</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>clathrin</subject><subject>Clathrin-Coated Vesicles</subject><subject>Clathrin-Coated Vesicles - metabolism</subject><subject>Endocytosis</subject><subject>Endosomal Sorting Complexes Required for Transport</subject><subject>Endosomal Sorting Complexes Required for Transport - metabolism</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Freight</subject><subject>metabolism</subject><subject>Multivesicular Bodies</subject><subject>Multivesicular Bodies - metabolism</subject><subject>Multivesicular Bodies - ultrastructure</subject><subject>mutants</subject><subject>phenotype</subject><subject>Plant cells</subject><subject>Plant Roots</subject><subject>Plant Roots - metabolism</subject><subject>Plasmids</subject><subject>Protein Transport</subject><subject>Protoplasts</subject><subject>Receptors</subject><subject>RNA</subject><subject>roots</subject><subject>trans-Golgi Network</subject><subject>trans-Golgi Network - metabolism</subject><subject>trans-Golgi Network - ultrastructure</subject><subject>Transfection</subject><subject>ultrastructure</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - ultrastructure</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAYhC0Eoh9w5QayuJRLtv5KbF-QSrUUpBYuRXCzHOdN6yWJF9sp6r_H0ZYVcODkkebxaOxB6AUlK0pJfZq3rgi6IqrRVD1Ch7TmrGJafXtcNBGkEk1ND9BRShtCCJVUP0UHjGouqOCH6OvVPGR_B8m7ebARvwudh4SvbJ4j4D6GEedbwNfRTqm6CMONx58g_wzx--naxuEer6cupDAC9hM-i7b1Xdgmn56hJ70dEjx_OI_Rl_fr6_MP1eXni4_nZ5eVq7nMleh1QxuhBZe6a5kE15BOklqpXnaica20IK1jDqyiQEGxHqzsmVW8dTWT_Bi93eVu53aEzsGUox3MNvrRxnsTrDd_O5O_NTfhznBGuGCsBJw8BMTwY4aUzeiTg2GwE4Q5GU0oKX3kQr75L0l5UxMmlVpavf4H3YQ5TuUjSl7DNOFkyVvtIBdDShH6fWtKzDKuKeMWQc1u3HLh1Z9v3eO_1yzAyx2wSTnEvb94QhLNfwHS6qp9</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Scheuring, David</creator><creator>Viotti, Corrado</creator><creator>Krüger, Falco</creator><creator>Künzl, Fabian</creator><creator>Sturm, Silke</creator><creator>Bubeck, Julia</creator><creator>Hillmer, Stefan</creator><creator>Frigerio, Lorenzo</creator><creator>Robinson, David G.</creator><creator>Pimpl, Peter</creator><creator>Schumacher, Karin</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis</title><author>Scheuring, David ; Viotti, Corrado ; Krüger, Falco ; Künzl, Fabian ; Sturm, Silke ; Bubeck, Julia ; Hillmer, Stefan ; Frigerio, Lorenzo ; Robinson, David G. ; Pimpl, Peter ; Schumacher, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-4f9616494379db27ec60d70588f7d46cb7ae7ac2cea81e1e82fea7f2a83bc5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annexins</topic><topic>Antibodies</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>clathrin</topic><topic>Clathrin-Coated Vesicles</topic><topic>Clathrin-Coated Vesicles - metabolism</topic><topic>Endocytosis</topic><topic>Endosomal Sorting Complexes Required for Transport</topic><topic>Endosomal Sorting Complexes Required for Transport - metabolism</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Freight</topic><topic>metabolism</topic><topic>Multivesicular Bodies</topic><topic>Multivesicular Bodies - metabolism</topic><topic>Multivesicular Bodies - ultrastructure</topic><topic>mutants</topic><topic>phenotype</topic><topic>Plant cells</topic><topic>Plant Roots</topic><topic>Plant Roots - metabolism</topic><topic>Plasmids</topic><topic>Protein Transport</topic><topic>Protoplasts</topic><topic>Receptors</topic><topic>RNA</topic><topic>roots</topic><topic>trans-Golgi Network</topic><topic>trans-Golgi Network - metabolism</topic><topic>trans-Golgi Network - ultrastructure</topic><topic>Transfection</topic><topic>ultrastructure</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheuring, David</creatorcontrib><creatorcontrib>Viotti, Corrado</creatorcontrib><creatorcontrib>Krüger, Falco</creatorcontrib><creatorcontrib>Künzl, Fabian</creatorcontrib><creatorcontrib>Sturm, Silke</creatorcontrib><creatorcontrib>Bubeck, Julia</creatorcontrib><creatorcontrib>Hillmer, Stefan</creatorcontrib><creatorcontrib>Frigerio, Lorenzo</creatorcontrib><creatorcontrib>Robinson, David G.</creatorcontrib><creatorcontrib>Pimpl, Peter</creatorcontrib><creatorcontrib>Schumacher, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheuring, David</au><au>Viotti, Corrado</au><au>Krüger, Falco</au><au>Künzl, Fabian</au><au>Sturm, Silke</au><au>Bubeck, Julia</au><au>Hillmer, Stefan</au><au>Frigerio, Lorenzo</au><au>Robinson, David G.</au><au>Pimpl, Peter</au><au>Schumacher, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>23</volume><issue>9</issue><spage>3463</spage><epage>3481</epage><pages>3463-3481</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole.The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>21934143</pmid><doi>10.1105/tpc.111.086918</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2011-09, Vol.23 (9), p.3463-3481 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203422 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Annexins Antibodies Arabidopsis Arabidopsis - metabolism Arabidopsis thaliana clathrin Clathrin-Coated Vesicles Clathrin-Coated Vesicles - metabolism Endocytosis Endosomal Sorting Complexes Required for Transport Endosomal Sorting Complexes Required for Transport - metabolism Endosomes Endosomes - metabolism Freight metabolism Multivesicular Bodies Multivesicular Bodies - metabolism Multivesicular Bodies - ultrastructure mutants phenotype Plant cells Plant Roots Plant Roots - metabolism Plasmids Protein Transport Protoplasts Receptors RNA roots trans-Golgi Network trans-Golgi Network - metabolism trans-Golgi Network - ultrastructure Transfection ultrastructure Vacuoles Vacuoles - metabolism Vacuoles - ultrastructure |
title | Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivesicular%20Bodies%20Mature%20from%20the%20Trans-Golgi%20Network/Early%20Endosome%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Scheuring,%20David&rft.date=2011-09-01&rft.volume=23&rft.issue=9&rft.spage=3463&rft.epage=3481&rft.pages=3463-3481&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.111.086918&rft_dat=%3Cjstor_pubme%3E41434709%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906290302&rft_id=info:pmid/21934143&rft_jstor_id=41434709&rfr_iscdi=true |