"What" Precedes "Which": Developmental Neural Tuning in Face- and Place-Related Cortex

Although category-specific activation for faces in the ventral visual pathway appears adult-like in adolescence, recognition abilities for individual faces are still immature. We investigated how the ability to represent "individual" faces and houses develops at the neural level. Category-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2011-09, Vol.21 (9), p.1963-1980
Hauptverfasser: Scherf, K. Suzanne, Luna, Beatriz, Avidan, Galia, Behrmann, Marlene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although category-specific activation for faces in the ventral visual pathway appears adult-like in adolescence, recognition abilities for individual faces are still immature. We investigated how the ability to represent "individual" faces and houses develops at the neural level. Category-selective regions of interest (ROIs) for faces in the fusiform gyrus (FG) and for places in the parahippocampal place area (PPA) were identified individually in children, adolescents, and adults. Then, using an functional magnetic resonance imaging adaptation paradigm, we measured category selectivity and individual-level adaptation for faces and houses in each ROI. Only adults exhibited both category selectivity and individual-level adaptation bilaterally for faces in the FG and for houses in the PPA. Adolescents showed category selectivity bilaterally for faces in the FG and houses in the PPA. Despite this profile of category selectivity, adolescents only exhibited individual-level adaptation for houses bilaterally in the PPA and for faces in the "left" FG. Children only showed category-selective responses for houses in the PPA, and they failed to exhibit category-selective responses for faces in the FG and individual-level adaptation effects anywhere in the brain. These results indicate that category-level neural tuning develops prior to individual-level neural tuning and that face-related cortex is disproportionately slower in this developmental transition than is place-related cortex.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhq269