Semi-supervised learning improves gene expression-based prediction of cancer recurrence
Motivation: Gene expression profiling has shown great potential in outcome prediction for different types of cancers. Nevertheless, small sample size remains a bottleneck in obtaining robust and accurate classifiers. Traditional supervised learning techniques can only work with labeled data. Consequ...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2011-11, Vol.27 (21), p.3017-3023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!