Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects

In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2008-11, Vol.43 (3), p.458-469
Hauptverfasser: Hua, Xue, Leow, Alex D., Parikshak, Neelroop, Lee, Suh, Chiang, Ming-Chang, Toga, Arthur W., Jack, Clifford R., Weiner, Michael W., Thompson, Paul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 3
container_start_page 458
container_title NeuroImage (Orlando, Fla.)
container_volume 43
creator Hua, Xue
Leow, Alex D.
Parikshak, Neelroop
Lee, Suh
Chiang, Ming-Chang
Toga, Arthur W.
Jack, Clifford R.
Weiner, Michael W.
Thompson, Paul M.
description In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.
doi_str_mv 10.1016/j.neuroimage.2008.07.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3197851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811908008380</els_id><sourcerecordid>3244686871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIREvhLyBLSHDpLvZu_MUBKYSvSK2QUDlbXns2cdi1U3u3Unrob8dRoha49DQj-Zl3PDNvUSCCK4IJe7-pPEwxuEGvoKoxFhXmFSbNk-KUYElLSXn9dJ_TphSEyJPiRUobjLEkM_G8OCGCScKoOC3ursCnEMtWJ7BoCHG7DgOMcYd0Qhrdt3F-hVoXBh1_Q0RdiGje367BDRDfJWRdgizwAc09uvy5RGmc7A6FDjHO0PzzObpcLM-R9hb5EAfdozS1GzBjelk863Sf4NUxnhW_vn65WnwvL358Wy7mF6WhDRtLokmLO0NZw-2s6RrOJLa6JUZYbYmpW8E5b0VtMNV4hhmjndaSUpsT0squOSs-HnS3UzuANeDHqHu1jXm2uFNBO_Xvi3drtQo3qiGSC0qywNujQAzXE6RRDS4Z6HvtIUxJMclrwcXsUZDImay5aDL45j9wE6bo8xYUoZhxwXPIlDhQJoaUInT3fyZY7b2gNurBC2rvBYW5yl7Ipa__nvmh8Hj8DHw6AJA3f-MgqmQceAPWxXwcZYN7vMsfV53LHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506787150</pqid></control><display><type>article</type><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M.</creator><creatorcontrib>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M. ; The Alzheimer's Disease Neuroimaging Initiative ; Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2008.07.013</identifier><identifier>PMID: 18691658</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age ; Aged ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Apolipoprotein E4 ; Apolipoprotein E4 - genetics ; Atrophy ; biomarkers ; Brain - pathology ; Brain mapping ; Brain Mapping - methods ; Cognitive ability ; Compression ; Dementia ; Dementia disorders ; Disease Progression ; Gene mapping ; Geriatrics ; Hippocampus ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Memory ; Morphometry ; Neurodegenerative diseases ; Neuroimaging ; Neuropsychological Tests ; Pharmaceutical industry ; Studies ; Temporal lobe</subject><ispartof>NeuroImage (Orlando, Fla.), 2008-11, Vol.43 (3), p.458-469</ispartof><rights>2008</rights><rights>Copyright Elsevier Limited Nov 15, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</citedby><cites>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506787150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18691658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Xue</creatorcontrib><creatorcontrib>Leow, Alex D.</creatorcontrib><creatorcontrib>Parikshak, Neelroop</creatorcontrib><creatorcontrib>Lee, Suh</creatorcontrib><creatorcontrib>Chiang, Ming-Chang</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Jack, Clifford R.</creatorcontrib><creatorcontrib>Weiner, Michael W.</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>The Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</description><subject>Age</subject><subject>Aged</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Apolipoprotein E4</subject><subject>Apolipoprotein E4 - genetics</subject><subject>Atrophy</subject><subject>biomarkers</subject><subject>Brain - pathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Cognitive ability</subject><subject>Compression</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Disease Progression</subject><subject>Gene mapping</subject><subject>Geriatrics</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Memory</subject><subject>Morphometry</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuropsychological Tests</subject><subject>Pharmaceutical industry</subject><subject>Studies</subject><subject>Temporal lobe</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1vEzEQhlcIREvhLyBLSHDpLvZu_MUBKYSvSK2QUDlbXns2cdi1U3u3Unrob8dRoha49DQj-Zl3PDNvUSCCK4IJe7-pPEwxuEGvoKoxFhXmFSbNk-KUYElLSXn9dJ_TphSEyJPiRUobjLEkM_G8OCGCScKoOC3ursCnEMtWJ7BoCHG7DgOMcYd0Qhrdt3F-hVoXBh1_Q0RdiGje367BDRDfJWRdgizwAc09uvy5RGmc7A6FDjHO0PzzObpcLM-R9hb5EAfdozS1GzBjelk863Sf4NUxnhW_vn65WnwvL358Wy7mF6WhDRtLokmLO0NZw-2s6RrOJLa6JUZYbYmpW8E5b0VtMNV4hhmjndaSUpsT0squOSs-HnS3UzuANeDHqHu1jXm2uFNBO_Xvi3drtQo3qiGSC0qywNujQAzXE6RRDS4Z6HvtIUxJMclrwcXsUZDImay5aDL45j9wE6bo8xYUoZhxwXPIlDhQJoaUInT3fyZY7b2gNurBC2rvBYW5yl7Ipa__nvmh8Hj8DHw6AJA3f-MgqmQceAPWxXwcZYN7vMsfV53LHQ</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Hua, Xue</creator><creator>Leow, Alex D.</creator><creator>Parikshak, Neelroop</creator><creator>Lee, Suh</creator><creator>Chiang, Ming-Chang</creator><creator>Toga, Arthur W.</creator><creator>Jack, Clifford R.</creator><creator>Weiner, Michael W.</creator><creator>Thompson, Paul M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081115</creationdate><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><author>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Age</topic><topic>Aged</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Apolipoprotein E4</topic><topic>Apolipoprotein E4 - genetics</topic><topic>Atrophy</topic><topic>biomarkers</topic><topic>Brain - pathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Cognitive ability</topic><topic>Compression</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Disease Progression</topic><topic>Gene mapping</topic><topic>Geriatrics</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Memory</topic><topic>Morphometry</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuropsychological Tests</topic><topic>Pharmaceutical industry</topic><topic>Studies</topic><topic>Temporal lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xue</creatorcontrib><creatorcontrib>Leow, Alex D.</creatorcontrib><creatorcontrib>Parikshak, Neelroop</creatorcontrib><creatorcontrib>Lee, Suh</creatorcontrib><creatorcontrib>Chiang, Ming-Chang</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Jack, Clifford R.</creatorcontrib><creatorcontrib>Weiner, Michael W.</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>The Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Xue</au><au>Leow, Alex D.</au><au>Parikshak, Neelroop</au><au>Lee, Suh</au><au>Chiang, Ming-Chang</au><au>Toga, Arthur W.</au><au>Jack, Clifford R.</au><au>Weiner, Michael W.</au><au>Thompson, Paul M.</au><aucorp>The Alzheimer's Disease Neuroimaging Initiative</aucorp><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>43</volume><issue>3</issue><spage>458</spage><epage>469</epage><pages>458-469</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18691658</pmid><doi>10.1016/j.neuroimage.2008.07.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2008-11, Vol.43 (3), p.458-469
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3197851
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Age
Aged
Alzheimer Disease - genetics
Alzheimer Disease - pathology
Alzheimer's disease
Apolipoprotein E4
Apolipoprotein E4 - genetics
Atrophy
biomarkers
Brain - pathology
Brain mapping
Brain Mapping - methods
Cognitive ability
Compression
Dementia
Dementia disorders
Disease Progression
Gene mapping
Geriatrics
Hippocampus
Humans
Image processing
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Memory
Morphometry
Neurodegenerative diseases
Neuroimaging
Neuropsychological Tests
Pharmaceutical industry
Studies
Temporal lobe
title Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-based%20morphometry%20as%20a%20neuroimaging%20biomarker%20for%20Alzheimer's%20disease:%20An%20MRI%20study%20of%20676%20AD,%20MCI,%20and%20normal%20subjects&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Hua,%20Xue&rft.aucorp=The%20Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2008-11-15&rft.volume=43&rft.issue=3&rft.spage=458&rft.epage=469&rft.pages=458-469&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2008.07.013&rft_dat=%3Cproquest_pubme%3E3244686871%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506787150&rft_id=info:pmid/18691658&rft_els_id=S1053811908008380&rfr_iscdi=true