Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects
In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimag...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2008-11, Vol.43 (3), p.458-469 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 3 |
container_start_page | 458 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 43 |
creator | Hua, Xue Leow, Alex D. Parikshak, Neelroop Lee, Suh Chiang, Ming-Chang Toga, Arthur W. Jack, Clifford R. Weiner, Michael W. Thompson, Paul M. |
description | In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies. |
doi_str_mv | 10.1016/j.neuroimage.2008.07.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3197851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811908008380</els_id><sourcerecordid>3244686871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIREvhLyBLSHDpLvZu_MUBKYSvSK2QUDlbXns2cdi1U3u3Unrob8dRoha49DQj-Zl3PDNvUSCCK4IJe7-pPEwxuEGvoKoxFhXmFSbNk-KUYElLSXn9dJ_TphSEyJPiRUobjLEkM_G8OCGCScKoOC3ursCnEMtWJ7BoCHG7DgOMcYd0Qhrdt3F-hVoXBh1_Q0RdiGje367BDRDfJWRdgizwAc09uvy5RGmc7A6FDjHO0PzzObpcLM-R9hb5EAfdozS1GzBjelk863Sf4NUxnhW_vn65WnwvL358Wy7mF6WhDRtLokmLO0NZw-2s6RrOJLa6JUZYbYmpW8E5b0VtMNV4hhmjndaSUpsT0squOSs-HnS3UzuANeDHqHu1jXm2uFNBO_Xvi3drtQo3qiGSC0qywNujQAzXE6RRDS4Z6HvtIUxJMclrwcXsUZDImay5aDL45j9wE6bo8xYUoZhxwXPIlDhQJoaUInT3fyZY7b2gNurBC2rvBYW5yl7Ipa__nvmh8Hj8DHw6AJA3f-MgqmQceAPWxXwcZYN7vMsfV53LHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506787150</pqid></control><display><type>article</type><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M.</creator><creatorcontrib>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M. ; The Alzheimer's Disease Neuroimaging Initiative ; Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2008.07.013</identifier><identifier>PMID: 18691658</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age ; Aged ; Alzheimer Disease - genetics ; Alzheimer Disease - pathology ; Alzheimer's disease ; Apolipoprotein E4 ; Apolipoprotein E4 - genetics ; Atrophy ; biomarkers ; Brain - pathology ; Brain mapping ; Brain Mapping - methods ; Cognitive ability ; Compression ; Dementia ; Dementia disorders ; Disease Progression ; Gene mapping ; Geriatrics ; Hippocampus ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Memory ; Morphometry ; Neurodegenerative diseases ; Neuroimaging ; Neuropsychological Tests ; Pharmaceutical industry ; Studies ; Temporal lobe</subject><ispartof>NeuroImage (Orlando, Fla.), 2008-11, Vol.43 (3), p.458-469</ispartof><rights>2008</rights><rights>Copyright Elsevier Limited Nov 15, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</citedby><cites>FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506787150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18691658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Xue</creatorcontrib><creatorcontrib>Leow, Alex D.</creatorcontrib><creatorcontrib>Parikshak, Neelroop</creatorcontrib><creatorcontrib>Lee, Suh</creatorcontrib><creatorcontrib>Chiang, Ming-Chang</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Jack, Clifford R.</creatorcontrib><creatorcontrib>Weiner, Michael W.</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>The Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</description><subject>Age</subject><subject>Aged</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Apolipoprotein E4</subject><subject>Apolipoprotein E4 - genetics</subject><subject>Atrophy</subject><subject>biomarkers</subject><subject>Brain - pathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Cognitive ability</subject><subject>Compression</subject><subject>Dementia</subject><subject>Dementia disorders</subject><subject>Disease Progression</subject><subject>Gene mapping</subject><subject>Geriatrics</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Memory</subject><subject>Morphometry</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neuropsychological Tests</subject><subject>Pharmaceutical industry</subject><subject>Studies</subject><subject>Temporal lobe</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1vEzEQhlcIREvhLyBLSHDpLvZu_MUBKYSvSK2QUDlbXns2cdi1U3u3Unrob8dRoha49DQj-Zl3PDNvUSCCK4IJe7-pPEwxuEGvoKoxFhXmFSbNk-KUYElLSXn9dJ_TphSEyJPiRUobjLEkM_G8OCGCScKoOC3ursCnEMtWJ7BoCHG7DgOMcYd0Qhrdt3F-hVoXBh1_Q0RdiGje367BDRDfJWRdgizwAc09uvy5RGmc7A6FDjHO0PzzObpcLM-R9hb5EAfdozS1GzBjelk863Sf4NUxnhW_vn65WnwvL358Wy7mF6WhDRtLokmLO0NZw-2s6RrOJLa6JUZYbYmpW8E5b0VtMNV4hhmjndaSUpsT0squOSs-HnS3UzuANeDHqHu1jXm2uFNBO_Xvi3drtQo3qiGSC0qywNujQAzXE6RRDS4Z6HvtIUxJMclrwcXsUZDImay5aDL45j9wE6bo8xYUoZhxwXPIlDhQJoaUInT3fyZY7b2gNurBC2rvBYW5yl7Ipa__nvmh8Hj8DHw6AJA3f-MgqmQceAPWxXwcZYN7vMsfV53LHQ</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Hua, Xue</creator><creator>Leow, Alex D.</creator><creator>Parikshak, Neelroop</creator><creator>Lee, Suh</creator><creator>Chiang, Ming-Chang</creator><creator>Toga, Arthur W.</creator><creator>Jack, Clifford R.</creator><creator>Weiner, Michael W.</creator><creator>Thompson, Paul M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081115</creationdate><title>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</title><author>Hua, Xue ; Leow, Alex D. ; Parikshak, Neelroop ; Lee, Suh ; Chiang, Ming-Chang ; Toga, Arthur W. ; Jack, Clifford R. ; Weiner, Michael W. ; Thompson, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1a1b0fc5637d43f37690dab1c8dad1c2b8777b82c05a040665faa955d65f1b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Age</topic><topic>Aged</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Apolipoprotein E4</topic><topic>Apolipoprotein E4 - genetics</topic><topic>Atrophy</topic><topic>biomarkers</topic><topic>Brain - pathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Cognitive ability</topic><topic>Compression</topic><topic>Dementia</topic><topic>Dementia disorders</topic><topic>Disease Progression</topic><topic>Gene mapping</topic><topic>Geriatrics</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Memory</topic><topic>Morphometry</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neuropsychological Tests</topic><topic>Pharmaceutical industry</topic><topic>Studies</topic><topic>Temporal lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xue</creatorcontrib><creatorcontrib>Leow, Alex D.</creatorcontrib><creatorcontrib>Parikshak, Neelroop</creatorcontrib><creatorcontrib>Lee, Suh</creatorcontrib><creatorcontrib>Chiang, Ming-Chang</creatorcontrib><creatorcontrib>Toga, Arthur W.</creatorcontrib><creatorcontrib>Jack, Clifford R.</creatorcontrib><creatorcontrib>Weiner, Michael W.</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><creatorcontrib>The Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Xue</au><au>Leow, Alex D.</au><au>Parikshak, Neelroop</au><au>Lee, Suh</au><au>Chiang, Ming-Chang</au><au>Toga, Arthur W.</au><au>Jack, Clifford R.</au><au>Weiner, Michael W.</au><au>Thompson, Paul M.</au><aucorp>The Alzheimer's Disease Neuroimaging Initiative</aucorp><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2008-11-15</date><risdate>2008</risdate><volume>43</volume><issue>3</issue><spage>458</spage><epage>469</epage><pages>458-469</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6±7.6 years), 330 MCI subjects (74.8±7.5), and 181 controls (75.9±5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements – the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores – at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers – 1/6 of the normal group – showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18691658</pmid><doi>10.1016/j.neuroimage.2008.07.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2008-11, Vol.43 (3), p.458-469 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3197851 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Age Aged Alzheimer Disease - genetics Alzheimer Disease - pathology Alzheimer's disease Apolipoprotein E4 Apolipoprotein E4 - genetics Atrophy biomarkers Brain - pathology Brain mapping Brain Mapping - methods Cognitive ability Compression Dementia Dementia disorders Disease Progression Gene mapping Geriatrics Hippocampus Humans Image processing Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Memory Morphometry Neurodegenerative diseases Neuroimaging Neuropsychological Tests Pharmaceutical industry Studies Temporal lobe |
title | Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: An MRI study of 676 AD, MCI, and normal subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-based%20morphometry%20as%20a%20neuroimaging%20biomarker%20for%20Alzheimer's%20disease:%20An%20MRI%20study%20of%20676%20AD,%20MCI,%20and%20normal%20subjects&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Hua,%20Xue&rft.aucorp=The%20Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2008-11-15&rft.volume=43&rft.issue=3&rft.spage=458&rft.epage=469&rft.pages=458-469&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2008.07.013&rft_dat=%3Cproquest_pubme%3E3244686871%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506787150&rft_id=info:pmid/18691658&rft_els_id=S1053811908008380&rfr_iscdi=true |