Ligand-receptor Interaction between Triterpenoids and the 11β-Hydroxysteroid dehydrogenase type 2 (11βHSD2) Enzyme Predicts Their Toxic Effects against Tumorigenic r/m HM-SFME-1 Cells

The present study deals with in silico prediction and in vitro evaluation of the selective cytotoxic effects of triterpenoids on tumorigenic human c-Ha-ras and mouse c-myc cotransfected highly metastatic serum-free mouse embryo-1 (r/m HM-SFME-1) cells. Ligand fitting of five different triterpenoids...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-10, Vol.286 (42), p.36888-36897
Hauptverfasser: Yamaguchi, Hideaki, Yu, Tao, Noshita, Toshiro, Kidachi, Yumi, Kamiie, Katsuyoshi, Yoshida, Kenji, Akitaya, Tatsuo, Umetsu, Hironori, Ryoyama, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study deals with in silico prediction and in vitro evaluation of the selective cytotoxic effects of triterpenoids on tumorigenic human c-Ha-ras and mouse c-myc cotransfected highly metastatic serum-free mouse embryo-1 (r/m HM-SFME-1) cells. Ligand fitting of five different triterpenoids to 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) was analyzed with a molecular modeling method, and glycyrrhetinic acid (GA) was the best-fitted triterpenoid to the ligand binding site in 11βHSD2. Analysis of antiproliferative effects revealed that GA, oleanolic acid, and ursolic acid had selective toxicity against the tumor cells and that GA was the most potent triterpenoid in its selectivity. The toxic activity of the tested triterpenoids against the tumor cells showed good correlations with the partition coefficient (logP) and polar surface area values. Time-lapse microscopy, fluorescence staining, and confocal laser scanning microscopic observation revealed that GA induced morphologic changes typical of apoptosis such as cell shrinkage and blebbing and also disrupted the cytoskeletal proteins. Furthermore, GA exhibited a strong inhibitory effect on 11βHSD2 activity in the tumor cells. Our current results suggest that analysis of the ligand-receptor interaction between triterpenoids and 11βHSD2 can be utilized to predict their antitumor effects and that GA can be used as a possible chemopreventive and therapeutic antitumor agent. To the best of our knowledge, this is the first report on in silico prediction of the toxic effects of triterpenoids on tumor cells by 11βHSD2 inhibition.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.265900