Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells

Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-10, Vol.286 (42), p.36777-36786
Hauptverfasser: Estela, Anna, Pla-Martín, David, Sánchez-Piris, Maribel, Sesaki, Hiromi, Palau, Francesc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36786
container_issue 42
container_start_page 36777
container_title The Journal of biological chemistry
container_volume 286
creator Estela, Anna
Pla-Martín, David
Sánchez-Piris, Maribel
Sesaki, Hiromi
Palau, Francesc
description Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G2/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G2/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.
doi_str_mv 10.1074/jbc.M111.260042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3196079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820508752</els_id><sourcerecordid>898837760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-56c6274ddbc7c289f6ba29172480b592a617592b95d223ddfeb03989294c95e93</originalsourceid><addsrcrecordid>eNp1kUFv2yAUx9G0qU27nnebuO1EAtgGc5lUuV02qdEqrZV6QxieFyrbZOBEyifY1y5pumo7jMs78OPHe--P0AdG54zKcvHY2vmKMTbngtKSv0EzRuuCFBV7eItmlHJGFK_qU3SW0iPNp1TsBJ1yVisquJih383aRBsmsjLRA7kLYVqTCL2ZwOEljICXV5e3DDdh2PQwwDgl3EDf42Zve8BXmdxjM-ElX6zw7dokwH7EP4y12RuGvYWELUTY-eQN4M4n9qwlDjqwk9_Bsy69R-860ye4eKnn6P7L9V3zldx8X35rLm-ILSSfSCWs4LJ0rrXS8lp1ojVcMcnLmraV4kYwmUurKsd54VwHLS1UrbgqrapAFefo89G72bYDOJsHiqbXm-gHE_c6GK__vRn9Wv8MO10wJag8CD69CGL4tYU06cEnm0cwI4Rt0rWq60JKQTO5OJI2hpQidK-_MKoP6emcnj6kp4_p5Rcf_27ulf8TVwbUEYC8op2HqJP1MFpwPuZtahf8f-VP8S-pXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898837760</pqid></control><display><type>article</type><title>Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Estela, Anna ; Pla-Martín, David ; Sánchez-Piris, Maribel ; Sesaki, Hiromi ; Palau, Francesc</creator><creatorcontrib>Estela, Anna ; Pla-Martín, David ; Sánchez-Piris, Maribel ; Sesaki, Hiromi ; Palau, Francesc</creatorcontrib><description>Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G2/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G2/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.260042</identifier><identifier>PMID: 21890626</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Cycle ; Cell Division ; Charcot-Marie-Tooth Disease ; Charcot-Marie-Tooth Disease - genetics ; Charcot-Marie-Tooth Disease - metabolism ; Cytoskeleton ; fis1 ; G2 Phase ; GDAP1 ; Genetic Complementation Test ; HeLa Cells ; Humans ; Microtubules - genetics ; Microtubules - metabolism ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitotic Spindle ; Molecular Bases of Disease ; Mutation, Missense ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Oxidative Stress ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Tubulin - genetics ; Tubulin - metabolism ; Yeast</subject><ispartof>The Journal of biological chemistry, 2011-10, Vol.286 (42), p.36777-36786</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-56c6274ddbc7c289f6ba29172480b592a617592b95d223ddfeb03989294c95e93</citedby><cites>FETCH-LOGICAL-c372t-56c6274ddbc7c289f6ba29172480b592a617592b95d223ddfeb03989294c95e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196079/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196079/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21890626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Estela, Anna</creatorcontrib><creatorcontrib>Pla-Martín, David</creatorcontrib><creatorcontrib>Sánchez-Piris, Maribel</creatorcontrib><creatorcontrib>Sesaki, Hiromi</creatorcontrib><creatorcontrib>Palau, Francesc</creatorcontrib><title>Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G2/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G2/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.</description><subject>Cell Cycle</subject><subject>Cell Division</subject><subject>Charcot-Marie-Tooth Disease</subject><subject>Charcot-Marie-Tooth Disease - genetics</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Cytoskeleton</subject><subject>fis1</subject><subject>G2 Phase</subject><subject>GDAP1</subject><subject>Genetic Complementation Test</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitotic Spindle</subject><subject>Molecular Bases of Disease</subject><subject>Mutation, Missense</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Oxidative Stress</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFv2yAUx9G0qU27nnebuO1EAtgGc5lUuV02qdEqrZV6QxieFyrbZOBEyifY1y5pumo7jMs78OPHe--P0AdG54zKcvHY2vmKMTbngtKSv0EzRuuCFBV7eItmlHJGFK_qU3SW0iPNp1TsBJ1yVisquJih383aRBsmsjLRA7kLYVqTCL2ZwOEljICXV5e3DDdh2PQwwDgl3EDf42Zve8BXmdxjM-ElX6zw7dokwH7EP4y12RuGvYWELUTY-eQN4M4n9qwlDjqwk9_Bsy69R-860ye4eKnn6P7L9V3zldx8X35rLm-ILSSfSCWs4LJ0rrXS8lp1ojVcMcnLmraV4kYwmUurKsd54VwHLS1UrbgqrapAFefo89G72bYDOJsHiqbXm-gHE_c6GK__vRn9Wv8MO10wJag8CD69CGL4tYU06cEnm0cwI4Rt0rWq60JKQTO5OJI2hpQidK-_MKoP6emcnj6kp4_p5Rcf_27ulf8TVwbUEYC8op2HqJP1MFpwPuZtahf8f-VP8S-pXw</recordid><startdate>20111021</startdate><enddate>20111021</enddate><creator>Estela, Anna</creator><creator>Pla-Martín, David</creator><creator>Sánchez-Piris, Maribel</creator><creator>Sesaki, Hiromi</creator><creator>Palau, Francesc</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111021</creationdate><title>Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells</title><author>Estela, Anna ; Pla-Martín, David ; Sánchez-Piris, Maribel ; Sesaki, Hiromi ; Palau, Francesc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-56c6274ddbc7c289f6ba29172480b592a617592b95d223ddfeb03989294c95e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cell Cycle</topic><topic>Cell Division</topic><topic>Charcot-Marie-Tooth Disease</topic><topic>Charcot-Marie-Tooth Disease - genetics</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Cytoskeleton</topic><topic>fis1</topic><topic>G2 Phase</topic><topic>GDAP1</topic><topic>Genetic Complementation Test</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitotic Spindle</topic><topic>Molecular Bases of Disease</topic><topic>Mutation, Missense</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Oxidative Stress</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estela, Anna</creatorcontrib><creatorcontrib>Pla-Martín, David</creatorcontrib><creatorcontrib>Sánchez-Piris, Maribel</creatorcontrib><creatorcontrib>Sesaki, Hiromi</creatorcontrib><creatorcontrib>Palau, Francesc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estela, Anna</au><au>Pla-Martín, David</au><au>Sánchez-Piris, Maribel</au><au>Sesaki, Hiromi</au><au>Palau, Francesc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-10-21</date><risdate>2011</risdate><volume>286</volume><issue>42</issue><spage>36777</spage><epage>36786</epage><pages>36777-36786</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G2/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G2/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21890626</pmid><doi>10.1074/jbc.M111.260042</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-10, Vol.286 (42), p.36777-36786
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3196079
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Cell Cycle
Cell Division
Charcot-Marie-Tooth Disease
Charcot-Marie-Tooth Disease - genetics
Charcot-Marie-Tooth Disease - metabolism
Cytoskeleton
fis1
G2 Phase
GDAP1
Genetic Complementation Test
HeLa Cells
Humans
Microtubules - genetics
Microtubules - metabolism
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Dynamics
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitotic Spindle
Molecular Bases of Disease
Mutation, Missense
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Oxidative Stress
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Tubulin - genetics
Tubulin - metabolism
Yeast
title Charcot-Marie-Tooth-related Gene GDAP1 Complements Cell Cycle Delay at G2/M Phase in Saccharomyces cerevisiae fis1 Gene-defective Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charcot-Marie-Tooth-related%20Gene%20GDAP1%20Complements%20Cell%20Cycle%20Delay%20at%20G2/M%20Phase%20in%20Saccharomyces%20cerevisiae%20fis1%20Gene-defective%20Cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Estela,%20Anna&rft.date=2011-10-21&rft.volume=286&rft.issue=42&rft.spage=36777&rft.epage=36786&rft.pages=36777-36786&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.260042&rft_dat=%3Cproquest_pubme%3E898837760%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898837760&rft_id=info:pmid/21890626&rft_els_id=S0021925820508752&rfr_iscdi=true