Method for Constructing Bijections for Classical Partition Identities
We sketch the construction of a bijection between the partitions of n with parts congruent to 1 or 4 (mod 5) and the partitions of n with parts differing by at least 2. This bijection is obtained by a cut-and-paste procedure that starts with a partition in one class and ends with a partition in the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1981-04, Vol.78 (4), p.2026-2028 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2028 |
---|---|
container_issue | 4 |
container_start_page | 2026 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 78 |
creator | Garsia, A. M. Milne, S. C. |
description | We sketch the construction of a bijection between the partitions of n with parts congruent to 1 or 4 (mod 5) and the partitions of n with parts differing by at least 2. This bijection is obtained by a cut-and-paste procedure that starts with a partition in one class and ends with a partition in the other class. The whole construction is a combination of a bijection discovered quite early by Schur and two bijections of our own. A basic principle concerning pairs of involutions provides the key for connecting all these bijections. It appears that our methods lead to an algorithm for constructing bijections for other identities of Rogers-Ramanujan type such as the Gordon identities. |
doi_str_mv | 10.1073/pnas.78.4.2026 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_319275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>9821</jstor_id><sourcerecordid>9821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6e1ae920136985d17b65e4cb722fbfd8eeac2188b509acdecbe8d898897a9493</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxS0EokvhisQBlBOcEsYficcHDrAqUKkIDr1bjjNps8rGi-0g-O9JtEspF04zmvd7M6PH2HMOFQct3x4mlyqNlaoEiOYB23AwvGyUgYdsAyB0iUqoM_YkpR0AmBrhMTvjTW0kgNqwiy-Ub0NX9CEW2zClHGefh-mm-DDsaOmW0VEbXUqDd2PxzcU8rEJx2dG0tpSeske9GxM9O9Vzdv3x4nr7ubz6-uly-_6q9BJNLhvijowALhuDdcd129SkfKuF6Nu-QyLnBUdsazDOd-Rbwg4NotHOKCPP2bvj2sPc7qnzy_noRnuIw97FXza4wf6rTMOtvQk_rORG6Hrxvzn5Y_g-U8p2PyRP4-gmCnOyWsoaFCIuZHUkfQwpRervjnCwa_B2Dd5qtMquwS-GV_df-4ufkl6AlydgNf6R7y94_T_d9vM4ZvqZF_DFEdylHOIdaVBw-RvmbqF1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733504888</pqid></control><display><type>article</type><title>Method for Constructing Bijections for Classical Partition Identities</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Garsia, A. M. ; Milne, S. C.</creator><creatorcontrib>Garsia, A. M. ; Milne, S. C.</creatorcontrib><description>We sketch the construction of a bijection between the partitions of n with parts congruent to 1 or 4 (mod 5) and the partitions of n with parts differing by at least 2. This bijection is obtained by a cut-and-paste procedure that starts with a partition in one class and ends with a partition in the other class. The whole construction is a combination of a bijection discovered quite early by Schur and two bijections of our own. A basic principle concerning pairs of involutions provides the key for connecting all these bijections. It appears that our methods lead to an algorithm for constructing bijections for other identities of Rogers-Ramanujan type such as the Gordon identities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.78.4.2026</identifier><identifier>PMID: 16593004</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Combinatorial permutations ; Combinatorics ; Mathematical sets ; Odd numbers ; Physical Sciences: Mathematics ; Symbolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1981-04, Vol.78 (4), p.2026-2028</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6e1ae920136985d17b65e4cb722fbfd8eeac2188b509acdecbe8d898897a9493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/78/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/9821$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/9821$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16593004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garsia, A. M.</creatorcontrib><creatorcontrib>Milne, S. C.</creatorcontrib><title>Method for Constructing Bijections for Classical Partition Identities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We sketch the construction of a bijection between the partitions of n with parts congruent to 1 or 4 (mod 5) and the partitions of n with parts differing by at least 2. This bijection is obtained by a cut-and-paste procedure that starts with a partition in one class and ends with a partition in the other class. The whole construction is a combination of a bijection discovered quite early by Schur and two bijections of our own. A basic principle concerning pairs of involutions provides the key for connecting all these bijections. It appears that our methods lead to an algorithm for constructing bijections for other identities of Rogers-Ramanujan type such as the Gordon identities.</description><subject>Combinatorial permutations</subject><subject>Combinatorics</subject><subject>Mathematical sets</subject><subject>Odd numbers</subject><subject>Physical Sciences: Mathematics</subject><subject>Symbolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp9kM1v1DAQxS0EokvhisQBlBOcEsYficcHDrAqUKkIDr1bjjNps8rGi-0g-O9JtEspF04zmvd7M6PH2HMOFQct3x4mlyqNlaoEiOYB23AwvGyUgYdsAyB0iUqoM_YkpR0AmBrhMTvjTW0kgNqwiy-Ub0NX9CEW2zClHGefh-mm-DDsaOmW0VEbXUqDd2PxzcU8rEJx2dG0tpSeske9GxM9O9Vzdv3x4nr7ubz6-uly-_6q9BJNLhvijowALhuDdcd129SkfKuF6Nu-QyLnBUdsazDOd-Rbwg4NotHOKCPP2bvj2sPc7qnzy_noRnuIw97FXza4wf6rTMOtvQk_rORG6Hrxvzn5Y_g-U8p2PyRP4-gmCnOyWsoaFCIuZHUkfQwpRervjnCwa_B2Dd5qtMquwS-GV_df-4ufkl6AlydgNf6R7y94_T_d9vM4ZvqZF_DFEdylHOIdaVBw-RvmbqF1</recordid><startdate>19810401</startdate><enddate>19810401</enddate><creator>Garsia, A. M.</creator><creator>Milne, S. C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19810401</creationdate><title>Method for Constructing Bijections for Classical Partition Identities</title><author>Garsia, A. M. ; Milne, S. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6e1ae920136985d17b65e4cb722fbfd8eeac2188b509acdecbe8d898897a9493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Combinatorial permutations</topic><topic>Combinatorics</topic><topic>Mathematical sets</topic><topic>Odd numbers</topic><topic>Physical Sciences: Mathematics</topic><topic>Symbolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garsia, A. M.</creatorcontrib><creatorcontrib>Milne, S. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garsia, A. M.</au><au>Milne, S. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method for Constructing Bijections for Classical Partition Identities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1981-04-01</date><risdate>1981</risdate><volume>78</volume><issue>4</issue><spage>2026</spage><epage>2028</epage><pages>2026-2028</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We sketch the construction of a bijection between the partitions of n with parts congruent to 1 or 4 (mod 5) and the partitions of n with parts differing by at least 2. This bijection is obtained by a cut-and-paste procedure that starts with a partition in one class and ends with a partition in the other class. The whole construction is a combination of a bijection discovered quite early by Schur and two bijections of our own. A basic principle concerning pairs of involutions provides the key for connecting all these bijections. It appears that our methods lead to an algorithm for constructing bijections for other identities of Rogers-Ramanujan type such as the Gordon identities.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16593004</pmid><doi>10.1073/pnas.78.4.2026</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1981-04, Vol.78 (4), p.2026-2028 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_319275 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Combinatorial permutations Combinatorics Mathematical sets Odd numbers Physical Sciences: Mathematics Symbolism |
title | Method for Constructing Bijections for Classical Partition Identities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20for%20Constructing%20Bijections%20for%20Classical%20Partition%20Identities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garsia,%20A.%20M.&rft.date=1981-04-01&rft.volume=78&rft.issue=4&rft.spage=2026&rft.epage=2028&rft.pages=2026-2028&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.78.4.2026&rft_dat=%3Cjstor_pubme%3E9821%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733504888&rft_id=info:pmid/16593004&rft_jstor_id=9821&rfr_iscdi=true |