Reading 1-D Barcodes with Mobile Phones Using Deformable Templates

Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2010-12, Vol.33 (9), p.1834-1843
Hauptverfasser: Gallo, Orazio, Manduchi, Roberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1843
container_issue 9
container_start_page 1834
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 33
creator Gallo, Orazio
Manduchi, Roberto
description Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early-commitment strategy that virtually all existing algorithms adopt: the image is first binarized and then only the binary data is processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all the gray level information of each pixel. Due to our parametrization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640×480, JPEG compressed) in an average time of 400–500 ms.
doi_str_mv 10.1109/TPAMI.2010.229
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3190667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3190667</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_31906673</originalsourceid><addsrcrecordid>eNqljMFOwkAURV-MRAq6dT0_UJw3U0pnYwKC0QUJIXU9mdIHHdN2mpmC8e-piRvXrm7uOTcX4BH5DJGrp3y33L7PBB-6EOoGIlRSxXIu1S1EHFMRZ5nIxjAJ4ZNzTOZc3sFYIC5kkmQRrPZkStueGMZrtjL-4EoK7Mv2Fdu6wtbEdpVrB_QRflZrOjrfmGLgOTVdbXoK9zA6mjrQw29O4fl1k7-8xd25aKg8UNt7U-vO28b4b-2M1X9Nayt9chctUfE0Xch_H1wBrkpXzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reading 1-D Barcodes with Mobile Phones Using Deformable Templates</title><source>IEEE Electronic Library Online</source><creator>Gallo, Orazio ; Manduchi, Roberto</creator><creatorcontrib>Gallo, Orazio ; Manduchi, Roberto</creatorcontrib><description>Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early-commitment strategy that virtually all existing algorithms adopt: the image is first binarized and then only the binary data is processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all the gray level information of each pixel. Due to our parametrization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640×480, JPEG compressed) in an average time of 400–500 ms.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2010.229</identifier><identifier>PMID: 21173448</identifier><language>eng</language><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-12, Vol.33 (9), p.1834-1843</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Gallo, Orazio</creatorcontrib><creatorcontrib>Manduchi, Roberto</creatorcontrib><title>Reading 1-D Barcodes with Mobile Phones Using Deformable Templates</title><title>IEEE transactions on pattern analysis and machine intelligence</title><description>Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early-commitment strategy that virtually all existing algorithms adopt: the image is first binarized and then only the binary data is processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all the gray level information of each pixel. Due to our parametrization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640×480, JPEG compressed) in an average time of 400–500 ms.</description><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqljMFOwkAURV-MRAq6dT0_UJw3U0pnYwKC0QUJIXU9mdIHHdN2mpmC8e-piRvXrm7uOTcX4BH5DJGrp3y33L7PBB-6EOoGIlRSxXIu1S1EHFMRZ5nIxjAJ4ZNzTOZc3sFYIC5kkmQRrPZkStueGMZrtjL-4EoK7Mv2Fdu6wtbEdpVrB_QRflZrOjrfmGLgOTVdbXoK9zA6mjrQw29O4fl1k7-8xd25aKg8UNt7U-vO28b4b-2M1X9Nayt9chctUfE0Xch_H1wBrkpXzg</recordid><startdate>20101223</startdate><enddate>20101223</enddate><creator>Gallo, Orazio</creator><creator>Manduchi, Roberto</creator><scope>5PM</scope></search><sort><creationdate>20101223</creationdate><title>Reading 1-D Barcodes with Mobile Phones Using Deformable Templates</title><author>Gallo, Orazio ; Manduchi, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_31906673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallo, Orazio</creatorcontrib><creatorcontrib>Manduchi, Roberto</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallo, Orazio</au><au>Manduchi, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reading 1-D Barcodes with Mobile Phones Using Deformable Templates</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><date>2010-12-23</date><risdate>2010</risdate><volume>33</volume><issue>9</issue><spage>1834</spage><epage>1843</epage><pages>1834-1843</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><abstract>Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early-commitment strategy that virtually all existing algorithms adopt: the image is first binarized and then only the binary data is processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all the gray level information of each pixel. Due to our parametrization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640×480, JPEG compressed) in an average time of 400–500 ms.</abstract><pmid>21173448</pmid><doi>10.1109/TPAMI.2010.229</doi></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2010-12, Vol.33 (9), p.1834-1843
issn 0162-8828
1939-3539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3190667
source IEEE Electronic Library Online
title Reading 1-D Barcodes with Mobile Phones Using Deformable Templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reading%201-D%20Barcodes%20with%20Mobile%20Phones%20Using%20Deformable%20Templates&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Gallo,%20Orazio&rft.date=2010-12-23&rft.volume=33&rft.issue=9&rft.spage=1834&rft.epage=1843&rft.pages=1834-1843&rft.issn=0162-8828&rft.eissn=1939-3539&rft_id=info:doi/10.1109/TPAMI.2010.229&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3190667%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21173448&rfr_iscdi=true