Targeting MYC dependence in cancer by inhibiting BET bromodomains

The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (40), p.16669-16674
Hauptverfasser: Mertz, Jennifer A, Conery, Andrew R, Bryant, Barbara M, Sandy, Peter, Balasubramanian, Srividya, Mele, Deanna A, Bergeron, Louise, Sims, Robert J., III
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16674
container_issue 40
container_start_page 16669
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Mertz, Jennifer A
Conery, Andrew R
Bryant, Barbara M
Sandy, Peter
Balasubramanian, Srividya
Mele, Deanna A
Bergeron, Louise
Sims, Robert J., III
description The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mechanisms driving its aberrant expression and the challenge of disrupting protein–DNA interactions. Here, we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule inhibitors of the BET family of chromatin adaptors. MYC transcriptional suppression was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain–promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G1 arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from cell cycle arrest and growth suppression by BET inhibitors. MYC suppression was accompanied by deregulation of the MYC transcriptome, including potent reactivation of the p21 tumor suppressor. Treatment with a BET inhibitor resulted in significant antitumor activity in xenograft models of Burkitt's lymphoma and acute myeloid leukemia. These findings demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains. Such inhibitors may have clinical utility given the widespread pathogenetic role of MYC in cancer.
doi_str_mv 10.1073/pnas.1108190108
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3189078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41321759</jstor_id><sourcerecordid>41321759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-3f488e4c6fba3b49bb12acb20caef84547352a9483ecaa46e8820a664cfe454a3</originalsourceid><addsrcrecordid>eNpVkM1vEzEQxS1ERUPhzAlYcd92_LFe-4LURm2p1IoD6YGTNXa8qaPGDvYGqf89DgkpvYzHer95M3qEfKBwSqHnZ-uI5ZRSUFRDra_IhIKmrRQaXpMJAOtbJZg4Jm9LWQKA7hS8IceMaqG57ifkfIZ54ccQF83dz2kz92sf5z4634TYOKxNbuxT_TwEG_5iF5ezxua0SvO0whDLO3I04GPx7_fvCbm_upxNv7W3369vpue3res6ObZ8EEp54eRgkVuhraUMnWXg0A9KdKLnHUMtFPcOUUivFAOUUrjBVxX5Cfm6811v7MrPnY9jxkezzmGF-ckkDOalEsODWaTfhlOloVfV4MveIKdfG19Gs0ybHOvNRmkptRYUKnS2g1xOpWQ_HBZQMNvIzTZy8xx5nfj0_10H_l_GFWj2wHby2U4ZUS1l3VyRjztkWcaUD4ygnNG-2-qfd_qAyeAih2LufzCgAoD2UtOO_wGegpqX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896699410</pqid></control><display><type>article</type><title>Targeting MYC dependence in cancer by inhibiting BET bromodomains</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mertz, Jennifer A ; Conery, Andrew R ; Bryant, Barbara M ; Sandy, Peter ; Balasubramanian, Srividya ; Mele, Deanna A ; Bergeron, Louise ; Sims, Robert J., III</creator><creatorcontrib>Mertz, Jennifer A ; Conery, Andrew R ; Bryant, Barbara M ; Sandy, Peter ; Balasubramanian, Srividya ; Mele, Deanna A ; Bergeron, Louise ; Sims, Robert J., III</creatorcontrib><description>The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mechanisms driving its aberrant expression and the challenge of disrupting protein–DNA interactions. Here, we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule inhibitors of the BET family of chromatin adaptors. MYC transcriptional suppression was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain–promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G1 arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from cell cycle arrest and growth suppression by BET inhibitors. MYC suppression was accompanied by deregulation of the MYC transcriptome, including potent reactivation of the p21 tumor suppressor. Treatment with a BET inhibitor resulted in significant antitumor activity in xenograft models of Burkitt's lymphoma and acute myeloid leukemia. These findings demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains. Such inhibitors may have clinical utility given the widespread pathogenetic role of MYC in cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1108190108</identifier><identifier>PMID: 21949397</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; anticarcinogenic activity ; Apoptosis ; Apoptosis - genetics ; Apoptosis - physiology ; Azepines - pharmacology ; Betting ; Biological Sciences ; Blotting, Western ; Burkitt Lymphoma - drug therapy ; Cancer ; Cell cycle ; Cell Cycle - physiology ; Cell Line, Tumor ; Cell lines ; Cell Proliferation - drug effects ; Chromatin ; Chromatin Immunoprecipitation ; chromosome translocation ; DNA-Binding Proteins - antagonists &amp; inhibitors ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Flow Cytometry ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Expression Regulation, Neoplastic - physiology ; Genes ; Genetic loci ; HeLa cells ; Humans ; Leukemia, Myeloid, Acute - drug therapy ; loci ; lymphoma ; Messenger RNA ; Mice ; Mice, Inbred NOD ; Mice, SCID ; myeloid leukemia ; Polymerase Chain Reaction ; Protein Structure, Tertiary - genetics ; Proteins ; RNA, Small Interfering - genetics ; transcription (genetics) ; transcription factors ; Transcription Factors - antagonists &amp; inhibitors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; transcriptome ; Triazoles - pharmacology ; Tumors ; Viability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16669-16674</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 4, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-3f488e4c6fba3b49bb12acb20caef84547352a9483ecaa46e8820a664cfe454a3</citedby><cites>FETCH-LOGICAL-c556t-3f488e4c6fba3b49bb12acb20caef84547352a9483ecaa46e8820a664cfe454a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41321759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41321759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mertz, Jennifer A</creatorcontrib><creatorcontrib>Conery, Andrew R</creatorcontrib><creatorcontrib>Bryant, Barbara M</creatorcontrib><creatorcontrib>Sandy, Peter</creatorcontrib><creatorcontrib>Balasubramanian, Srividya</creatorcontrib><creatorcontrib>Mele, Deanna A</creatorcontrib><creatorcontrib>Bergeron, Louise</creatorcontrib><creatorcontrib>Sims, Robert J., III</creatorcontrib><title>Targeting MYC dependence in cancer by inhibiting BET bromodomains</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mechanisms driving its aberrant expression and the challenge of disrupting protein–DNA interactions. Here, we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule inhibitors of the BET family of chromatin adaptors. MYC transcriptional suppression was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain–promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G1 arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from cell cycle arrest and growth suppression by BET inhibitors. MYC suppression was accompanied by deregulation of the MYC transcriptome, including potent reactivation of the p21 tumor suppressor. Treatment with a BET inhibitor resulted in significant antitumor activity in xenograft models of Burkitt's lymphoma and acute myeloid leukemia. These findings demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains. Such inhibitors may have clinical utility given the widespread pathogenetic role of MYC in cancer.</description><subject>Animals</subject><subject>anticarcinogenic activity</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>Azepines - pharmacology</subject><subject>Betting</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Burkitt Lymphoma - drug therapy</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Proliferation - drug effects</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>chromosome translocation</subject><subject>DNA-Binding Proteins - antagonists &amp; inhibitors</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Genes</subject><subject>Genetic loci</subject><subject>HeLa cells</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>loci</subject><subject>lymphoma</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>myeloid leukemia</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>RNA, Small Interfering - genetics</subject><subject>transcription (genetics)</subject><subject>transcription factors</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>transcriptome</subject><subject>Triazoles - pharmacology</subject><subject>Tumors</subject><subject>Viability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1vEzEQxS1ERUPhzAlYcd92_LFe-4LURm2p1IoD6YGTNXa8qaPGDvYGqf89DgkpvYzHer95M3qEfKBwSqHnZ-uI5ZRSUFRDra_IhIKmrRQaXpMJAOtbJZg4Jm9LWQKA7hS8IceMaqG57ifkfIZ54ccQF83dz2kz92sf5z4634TYOKxNbuxT_TwEG_5iF5ezxua0SvO0whDLO3I04GPx7_fvCbm_upxNv7W3369vpue3res6ObZ8EEp54eRgkVuhraUMnWXg0A9KdKLnHUMtFPcOUUivFAOUUrjBVxX5Cfm6811v7MrPnY9jxkezzmGF-ckkDOalEsODWaTfhlOloVfV4MveIKdfG19Gs0ybHOvNRmkptRYUKnS2g1xOpWQ_HBZQMNvIzTZy8xx5nfj0_10H_l_GFWj2wHby2U4ZUS1l3VyRjztkWcaUD4ygnNG-2-qfd_qAyeAih2LufzCgAoD2UtOO_wGegpqX</recordid><startdate>20111004</startdate><enddate>20111004</enddate><creator>Mertz, Jennifer A</creator><creator>Conery, Andrew R</creator><creator>Bryant, Barbara M</creator><creator>Sandy, Peter</creator><creator>Balasubramanian, Srividya</creator><creator>Mele, Deanna A</creator><creator>Bergeron, Louise</creator><creator>Sims, Robert J., III</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20111004</creationdate><title>Targeting MYC dependence in cancer by inhibiting BET bromodomains</title><author>Mertz, Jennifer A ; Conery, Andrew R ; Bryant, Barbara M ; Sandy, Peter ; Balasubramanian, Srividya ; Mele, Deanna A ; Bergeron, Louise ; Sims, Robert J., III</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-3f488e4c6fba3b49bb12acb20caef84547352a9483ecaa46e8820a664cfe454a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>anticarcinogenic activity</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>Azepines - pharmacology</topic><topic>Betting</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Burkitt Lymphoma - drug therapy</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Proliferation - drug effects</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>chromosome translocation</topic><topic>DNA-Binding Proteins - antagonists &amp; inhibitors</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Genes</topic><topic>Genetic loci</topic><topic>HeLa cells</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>loci</topic><topic>lymphoma</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>myeloid leukemia</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>RNA, Small Interfering - genetics</topic><topic>transcription (genetics)</topic><topic>transcription factors</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>transcriptome</topic><topic>Triazoles - pharmacology</topic><topic>Tumors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mertz, Jennifer A</creatorcontrib><creatorcontrib>Conery, Andrew R</creatorcontrib><creatorcontrib>Bryant, Barbara M</creatorcontrib><creatorcontrib>Sandy, Peter</creatorcontrib><creatorcontrib>Balasubramanian, Srividya</creatorcontrib><creatorcontrib>Mele, Deanna A</creatorcontrib><creatorcontrib>Bergeron, Louise</creatorcontrib><creatorcontrib>Sims, Robert J., III</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mertz, Jennifer A</au><au>Conery, Andrew R</au><au>Bryant, Barbara M</au><au>Sandy, Peter</au><au>Balasubramanian, Srividya</au><au>Mele, Deanna A</au><au>Bergeron, Louise</au><au>Sims, Robert J., III</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting MYC dependence in cancer by inhibiting BET bromodomains</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-04</date><risdate>2011</risdate><volume>108</volume><issue>40</issue><spage>16669</spage><epage>16674</epage><pages>16669-16674</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The MYC transcription factor is a master regulator of diverse cellular functions and has been long considered a compelling therapeutic target because of its role in a range of human malignancies. However, pharmacologic inhibition of MYC function has proven challenging because of both the diverse mechanisms driving its aberrant expression and the challenge of disrupting protein–DNA interactions. Here, we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule inhibitors of the BET family of chromatin adaptors. MYC transcriptional suppression was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain–promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G1 arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from cell cycle arrest and growth suppression by BET inhibitors. MYC suppression was accompanied by deregulation of the MYC transcriptome, including potent reactivation of the p21 tumor suppressor. Treatment with a BET inhibitor resulted in significant antitumor activity in xenograft models of Burkitt's lymphoma and acute myeloid leukemia. These findings demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains. Such inhibitors may have clinical utility given the widespread pathogenetic role of MYC in cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21949397</pmid><doi>10.1073/pnas.1108190108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (40), p.16669-16674
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3189078
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
anticarcinogenic activity
Apoptosis
Apoptosis - genetics
Apoptosis - physiology
Azepines - pharmacology
Betting
Biological Sciences
Blotting, Western
Burkitt Lymphoma - drug therapy
Cancer
Cell cycle
Cell Cycle - physiology
Cell Line, Tumor
Cell lines
Cell Proliferation - drug effects
Chromatin
Chromatin Immunoprecipitation
chromosome translocation
DNA-Binding Proteins - antagonists & inhibitors
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Dose-Response Relationship, Drug
Flow Cytometry
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic - drug effects
Gene Expression Regulation, Neoplastic - physiology
Genes
Genetic loci
HeLa cells
Humans
Leukemia, Myeloid, Acute - drug therapy
loci
lymphoma
Messenger RNA
Mice
Mice, Inbred NOD
Mice, SCID
myeloid leukemia
Polymerase Chain Reaction
Protein Structure, Tertiary - genetics
Proteins
RNA, Small Interfering - genetics
transcription (genetics)
transcription factors
Transcription Factors - antagonists & inhibitors
Transcription Factors - genetics
Transcription Factors - metabolism
transcriptome
Triazoles - pharmacology
Tumors
Viability
title Targeting MYC dependence in cancer by inhibiting BET bromodomains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20MYC%20dependence%20in%20cancer%20by%20inhibiting%20BET%20bromodomains&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mertz,%20Jennifer%20A&rft.date=2011-10-04&rft.volume=108&rft.issue=40&rft.spage=16669&rft.epage=16674&rft.pages=16669-16674&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1108190108&rft_dat=%3Cjstor_pubme%3E41321759%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896699410&rft_id=info:pmid/21949397&rft_jstor_id=41321759&rfr_iscdi=true