Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties

Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2011-09, Vol.12 (9), p.3265-3274
Hauptverfasser: Ma, Zuwei, Hong, Yi, Nelson, Devin M, Pichamuthu, Joseph E, Leeson, Cory E, Wagner, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3274
container_issue 9
container_start_page 3265
container_title Biomacromolecules
container_volume 12
creator Ma, Zuwei
Hong, Yi
Nelson, Devin M
Pichamuthu, Joseph E
Leeson, Cory E
Wagner, William R
description Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (
doi_str_mv 10.1021/bm2007218
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911159244</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</originalsourceid><addsrcrecordid>eNptkd9qFDEUxgdRbK1e-AKSGxGho8nMZGbSC0GX-gdaLNTqZTiTOdlNySRrklH2oXxHs-26VRAOJIf8-M7J9xXFU0ZfMVqx18NUUdpVrL9XHDJetWXT0ur-zZ2XXSe6g-JRjNeUUlE3_GFxULGOcyHEYfHrnfEjLgOMMFgkF95u5oBpBQ7JVUCI5KdJK_IVgtkDGBMG4sNNoyAM3kFCcul1Ipe4nNCleEJOtUaVIvGaLMImJrDWOJM2x-TcW1SzhUC-oVmu0jEBN5KFn9Y-mmS8I7nOUeUljAJLLoJfY0gG4-PigQYb8cnuPCqu3p9-WXwszz5_-LR4e1ZC07apBGz00AhW075TnNUCtALKWJcNULqvWhgEsJHXou6oAD7oHscWNe8BW1U39VHx5lZ3PQ8Tjir_KICV62AmCBvpwch_X5xZyaX_IWvW96LfCrzYCQT_fc6GyclEhdZmX_0cpWCMcVE1W_LlLamCjzGg3k9hVG7Tlft0M_vs77X25J84M_B8B0DMzukATpl4xzU8V1ffcaCivPZzcNnN_wz8DRfjvVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911159244</pqid></control><display><type>article</type><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</creator><creatorcontrib>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</creatorcontrib><description>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (&lt;50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm2007218</identifier><identifier>PMID: 21755999</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Applied sciences ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - metabolism ; Biodegradation, Environmental ; Caproates - chemistry ; Crystallization ; Elastomers - chemistry ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Exact sciences and technology ; Lactones - chemistry ; Magnetic Resonance Spectroscopy ; Muscle, Smooth - cytology ; Muscle, Smooth - drug effects ; Organic polymers ; Physicochemistry of polymers ; Polycondensation ; Polyesters - chemical synthesis ; Polyesters - metabolism ; Polyesters - pharmacology ; Polyurethanes - chemical synthesis ; Polyurethanes - metabolism ; Polyurethanes - pharmacology ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Primary Cell Culture ; Pyrones - chemistry ; Rats ; Spectroscopy, Fourier Transform Infrared ; Tensile Strength ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomacromolecules, 2011-09, Vol.12 (9), p.3265-3274</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</citedby><cites>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm2007218$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm2007218$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24524573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21755999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zuwei</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Nelson, Devin M</creatorcontrib><creatorcontrib>Pichamuthu, Joseph E</creatorcontrib><creatorcontrib>Leeson, Cory E</creatorcontrib><creatorcontrib>Wagner, William R</creatorcontrib><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (&lt;50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Caproates - chemistry</subject><subject>Crystallization</subject><subject>Elastomers - chemistry</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Exact sciences and technology</subject><subject>Lactones - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - drug effects</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polycondensation</subject><subject>Polyesters - chemical synthesis</subject><subject>Polyesters - metabolism</subject><subject>Polyesters - pharmacology</subject><subject>Polyurethanes - chemical synthesis</subject><subject>Polyurethanes - metabolism</subject><subject>Polyurethanes - pharmacology</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Primary Cell Culture</subject><subject>Pyrones - chemistry</subject><subject>Rats</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkd9qFDEUxgdRbK1e-AKSGxGho8nMZGbSC0GX-gdaLNTqZTiTOdlNySRrklH2oXxHs-26VRAOJIf8-M7J9xXFU0ZfMVqx18NUUdpVrL9XHDJetWXT0ur-zZ2XXSe6g-JRjNeUUlE3_GFxULGOcyHEYfHrnfEjLgOMMFgkF95u5oBpBQ7JVUCI5KdJK_IVgtkDGBMG4sNNoyAM3kFCcul1Ipe4nNCleEJOtUaVIvGaLMImJrDWOJM2x-TcW1SzhUC-oVmu0jEBN5KFn9Y-mmS8I7nOUeUljAJLLoJfY0gG4-PigQYb8cnuPCqu3p9-WXwszz5_-LR4e1ZC07apBGz00AhW075TnNUCtALKWJcNULqvWhgEsJHXou6oAD7oHscWNe8BW1U39VHx5lZ3PQ8Tjir_KICV62AmCBvpwch_X5xZyaX_IWvW96LfCrzYCQT_fc6GyclEhdZmX_0cpWCMcVE1W_LlLamCjzGg3k9hVG7Tlft0M_vs77X25J84M_B8B0DMzukATpl4xzU8V1ffcaCivPZzcNnN_wz8DRfjvVo</recordid><startdate>20110912</startdate><enddate>20110912</enddate><creator>Ma, Zuwei</creator><creator>Hong, Yi</creator><creator>Nelson, Devin M</creator><creator>Pichamuthu, Joseph E</creator><creator>Leeson, Cory E</creator><creator>Wagner, William R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110912</creationdate><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><author>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Caproates - chemistry</topic><topic>Crystallization</topic><topic>Elastomers - chemistry</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Exact sciences and technology</topic><topic>Lactones - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - drug effects</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polycondensation</topic><topic>Polyesters - chemical synthesis</topic><topic>Polyesters - metabolism</topic><topic>Polyesters - pharmacology</topic><topic>Polyurethanes - chemical synthesis</topic><topic>Polyurethanes - metabolism</topic><topic>Polyurethanes - pharmacology</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Primary Cell Culture</topic><topic>Pyrones - chemistry</topic><topic>Rats</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zuwei</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Nelson, Devin M</creatorcontrib><creatorcontrib>Pichamuthu, Joseph E</creatorcontrib><creatorcontrib>Leeson, Cory E</creatorcontrib><creatorcontrib>Wagner, William R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zuwei</au><au>Hong, Yi</au><au>Nelson, Devin M</au><au>Pichamuthu, Joseph E</au><au>Leeson, Cory E</au><au>Wagner, William R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2011-09-12</date><risdate>2011</risdate><volume>12</volume><issue>9</issue><spage>3265</spage><epage>3274</epage><pages>3265-3274</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (&lt;50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21755999</pmid><doi>10.1021/bm2007218</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2011-09, Vol.12 (9), p.3265-3274
issn 1525-7797
1526-4602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188984
source ACS Publications; MEDLINE
subjects Animals
Applied sciences
Biocompatible Materials - chemical synthesis
Biocompatible Materials - metabolism
Biodegradation, Environmental
Caproates - chemistry
Crystallization
Elastomers - chemistry
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelium, Vascular - cytology
Endothelium, Vascular - drug effects
Exact sciences and technology
Lactones - chemistry
Magnetic Resonance Spectroscopy
Muscle, Smooth - cytology
Muscle, Smooth - drug effects
Organic polymers
Physicochemistry of polymers
Polycondensation
Polyesters - chemical synthesis
Polyesters - metabolism
Polyesters - pharmacology
Polyurethanes - chemical synthesis
Polyurethanes - metabolism
Polyurethanes - pharmacology
Preparation, kinetics, thermodynamics, mechanism and catalysts
Primary Cell Culture
Pyrones - chemistry
Rats
Spectroscopy, Fourier Transform Infrared
Tensile Strength
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Polyurethane%20Ureas%20with%20Variable%20Polyester%20or%20Polycarbonate%20Soft%20Segments:%20Effects%20of%20Crystallinity,%20Molecular%20Weight,%20and%20Composition%20on%20Mechanical%20Properties&rft.jtitle=Biomacromolecules&rft.au=Ma,%20Zuwei&rft.date=2011-09-12&rft.volume=12&rft.issue=9&rft.spage=3265&rft.epage=3274&rft.pages=3265-3274&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm2007218&rft_dat=%3Cproquest_pubme%3E911159244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911159244&rft_id=info:pmid/21755999&rfr_iscdi=true