Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties
Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2011-09, Vol.12 (9), p.3265-3274 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3274 |
---|---|
container_issue | 9 |
container_start_page | 3265 |
container_title | Biomacromolecules |
container_volume | 12 |
creator | Ma, Zuwei Hong, Yi Nelson, Devin M Pichamuthu, Joseph E Leeson, Cory E Wagner, William R |
description | Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains ( |
doi_str_mv | 10.1021/bm2007218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>911159244</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</originalsourceid><addsrcrecordid>eNptkd9qFDEUxgdRbK1e-AKSGxGho8nMZGbSC0GX-gdaLNTqZTiTOdlNySRrklH2oXxHs-26VRAOJIf8-M7J9xXFU0ZfMVqx18NUUdpVrL9XHDJetWXT0ur-zZ2XXSe6g-JRjNeUUlE3_GFxULGOcyHEYfHrnfEjLgOMMFgkF95u5oBpBQ7JVUCI5KdJK_IVgtkDGBMG4sNNoyAM3kFCcul1Ipe4nNCleEJOtUaVIvGaLMImJrDWOJM2x-TcW1SzhUC-oVmu0jEBN5KFn9Y-mmS8I7nOUeUljAJLLoJfY0gG4-PigQYb8cnuPCqu3p9-WXwszz5_-LR4e1ZC07apBGz00AhW075TnNUCtALKWJcNULqvWhgEsJHXou6oAD7oHscWNe8BW1U39VHx5lZ3PQ8Tjir_KICV62AmCBvpwch_X5xZyaX_IWvW96LfCrzYCQT_fc6GyclEhdZmX_0cpWCMcVE1W_LlLamCjzGg3k9hVG7Tlft0M_vs77X25J84M_B8B0DMzukATpl4xzU8V1ffcaCivPZzcNnN_wz8DRfjvVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911159244</pqid></control><display><type>article</type><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</creator><creatorcontrib>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</creatorcontrib><description>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm2007218</identifier><identifier>PMID: 21755999</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Applied sciences ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - metabolism ; Biodegradation, Environmental ; Caproates - chemistry ; Crystallization ; Elastomers - chemistry ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelium, Vascular - cytology ; Endothelium, Vascular - drug effects ; Exact sciences and technology ; Lactones - chemistry ; Magnetic Resonance Spectroscopy ; Muscle, Smooth - cytology ; Muscle, Smooth - drug effects ; Organic polymers ; Physicochemistry of polymers ; Polycondensation ; Polyesters - chemical synthesis ; Polyesters - metabolism ; Polyesters - pharmacology ; Polyurethanes - chemical synthesis ; Polyurethanes - metabolism ; Polyurethanes - pharmacology ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Primary Cell Culture ; Pyrones - chemistry ; Rats ; Spectroscopy, Fourier Transform Infrared ; Tensile Strength ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomacromolecules, 2011-09, Vol.12 (9), p.3265-3274</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</citedby><cites>FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm2007218$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm2007218$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21755999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Zuwei</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Nelson, Devin M</creatorcontrib><creatorcontrib>Pichamuthu, Joseph E</creatorcontrib><creatorcontrib>Leeson, Cory E</creatorcontrib><creatorcontrib>Wagner, William R</creatorcontrib><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Caproates - chemistry</subject><subject>Crystallization</subject><subject>Elastomers - chemistry</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Exact sciences and technology</subject><subject>Lactones - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Muscle, Smooth - cytology</subject><subject>Muscle, Smooth - drug effects</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polycondensation</subject><subject>Polyesters - chemical synthesis</subject><subject>Polyesters - metabolism</subject><subject>Polyesters - pharmacology</subject><subject>Polyurethanes - chemical synthesis</subject><subject>Polyurethanes - metabolism</subject><subject>Polyurethanes - pharmacology</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Primary Cell Culture</subject><subject>Pyrones - chemistry</subject><subject>Rats</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkd9qFDEUxgdRbK1e-AKSGxGho8nMZGbSC0GX-gdaLNTqZTiTOdlNySRrklH2oXxHs-26VRAOJIf8-M7J9xXFU0ZfMVqx18NUUdpVrL9XHDJetWXT0ur-zZ2XXSe6g-JRjNeUUlE3_GFxULGOcyHEYfHrnfEjLgOMMFgkF95u5oBpBQ7JVUCI5KdJK_IVgtkDGBMG4sNNoyAM3kFCcul1Ipe4nNCleEJOtUaVIvGaLMImJrDWOJM2x-TcW1SzhUC-oVmu0jEBN5KFn9Y-mmS8I7nOUeUljAJLLoJfY0gG4-PigQYb8cnuPCqu3p9-WXwszz5_-LR4e1ZC07apBGz00AhW075TnNUCtALKWJcNULqvWhgEsJHXou6oAD7oHscWNe8BW1U39VHx5lZ3PQ8Tjir_KICV62AmCBvpwch_X5xZyaX_IWvW96LfCrzYCQT_fc6GyclEhdZmX_0cpWCMcVE1W_LlLamCjzGg3k9hVG7Tlft0M_vs77X25J84M_B8B0DMzukATpl4xzU8V1ffcaCivPZzcNnN_wz8DRfjvVo</recordid><startdate>20110912</startdate><enddate>20110912</enddate><creator>Ma, Zuwei</creator><creator>Hong, Yi</creator><creator>Nelson, Devin M</creator><creator>Pichamuthu, Joseph E</creator><creator>Leeson, Cory E</creator><creator>Wagner, William R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110912</creationdate><title>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</title><author>Ma, Zuwei ; Hong, Yi ; Nelson, Devin M ; Pichamuthu, Joseph E ; Leeson, Cory E ; Wagner, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-ae4fb4913087c5139afca0117009cf826ab9a1d5393709a5bf8ed6ef58ae6c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Caproates - chemistry</topic><topic>Crystallization</topic><topic>Elastomers - chemistry</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Exact sciences and technology</topic><topic>Lactones - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Muscle, Smooth - cytology</topic><topic>Muscle, Smooth - drug effects</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polycondensation</topic><topic>Polyesters - chemical synthesis</topic><topic>Polyesters - metabolism</topic><topic>Polyesters - pharmacology</topic><topic>Polyurethanes - chemical synthesis</topic><topic>Polyurethanes - metabolism</topic><topic>Polyurethanes - pharmacology</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Primary Cell Culture</topic><topic>Pyrones - chemistry</topic><topic>Rats</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zuwei</creatorcontrib><creatorcontrib>Hong, Yi</creatorcontrib><creatorcontrib>Nelson, Devin M</creatorcontrib><creatorcontrib>Pichamuthu, Joseph E</creatorcontrib><creatorcontrib>Leeson, Cory E</creatorcontrib><creatorcontrib>Wagner, William R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zuwei</au><au>Hong, Yi</au><au>Nelson, Devin M</au><au>Pichamuthu, Joseph E</au><au>Leeson, Cory E</au><au>Wagner, William R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2011-09-12</date><risdate>2011</risdate><volume>12</volume><issue>9</issue><spage>3265</spage><epage>3274</epage><pages>3265-3274</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800–1400%) and high tensile strength (30–60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M n and PVLCL 6000 M n), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21755999</pmid><doi>10.1021/bm2007218</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2011-09, Vol.12 (9), p.3265-3274 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188984 |
source | ACS Publications; MEDLINE |
subjects | Animals Applied sciences Biocompatible Materials - chemical synthesis Biocompatible Materials - metabolism Biodegradation, Environmental Caproates - chemistry Crystallization Elastomers - chemistry Endothelial Cells - cytology Endothelial Cells - drug effects Endothelium, Vascular - cytology Endothelium, Vascular - drug effects Exact sciences and technology Lactones - chemistry Magnetic Resonance Spectroscopy Muscle, Smooth - cytology Muscle, Smooth - drug effects Organic polymers Physicochemistry of polymers Polycondensation Polyesters - chemical synthesis Polyesters - metabolism Polyesters - pharmacology Polyurethanes - chemical synthesis Polyurethanes - metabolism Polyurethanes - pharmacology Preparation, kinetics, thermodynamics, mechanism and catalysts Primary Cell Culture Pyrones - chemistry Rats Spectroscopy, Fourier Transform Infrared Tensile Strength Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Biodegradable Polyurethane Ureas with Variable Polyester or Polycarbonate Soft Segments: Effects of Crystallinity, Molecular Weight, and Composition on Mechanical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Polyurethane%20Ureas%20with%20Variable%20Polyester%20or%20Polycarbonate%20Soft%20Segments:%20Effects%20of%20Crystallinity,%20Molecular%20Weight,%20and%20Composition%20on%20Mechanical%20Properties&rft.jtitle=Biomacromolecules&rft.au=Ma,%20Zuwei&rft.date=2011-09-12&rft.volume=12&rft.issue=9&rft.spage=3265&rft.epage=3274&rft.pages=3265-3274&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm2007218&rft_dat=%3Cproquest_pubme%3E911159244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911159244&rft_id=info:pmid/21755999&rfr_iscdi=true |