NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action

BACKGROUND Celastrol is one of several bioactive compounds extracted from the medicinal plant Tripterygium wilfordii. Celastrol is used to treat inflammatory conditions, and shows benefits in models of neurodegenerative disease, cancer and arthritis, although its mechanism of action is incompletely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2011-09, Vol.164 (2b), p.507-520
Hauptverfasser: Jaquet, Vincent, Marcoux, Julien, Forest, Eric, Leidal, Kevin G, McCormick, Sally, Westermaier, Yvonne, Perozzo, Remo, Plastre, Olivier, Fioraso‐Cartier, Laetitia, Diebold, Becky, Scapozza, Leonardo, Nauseef, William M, Fieschi, Franck, Krause, Karl‐Heinz, Bedard, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 2b
container_start_page 507
container_title British journal of pharmacology
container_volume 164
creator Jaquet, Vincent
Marcoux, Julien
Forest, Eric
Leidal, Kevin G
McCormick, Sally
Westermaier, Yvonne
Perozzo, Remo
Plastre, Olivier
Fioraso‐Cartier, Laetitia
Diebold, Becky
Scapozza, Leonardo
Nauseef, William M
Fieschi, Franck
Krause, Karl‐Heinz
Bedard, Karen
description BACKGROUND Celastrol is one of several bioactive compounds extracted from the medicinal plant Tripterygium wilfordii. Celastrol is used to treat inflammatory conditions, and shows benefits in models of neurodegenerative disease, cancer and arthritis, although its mechanism of action is incompletely understood. EXPERIMENTAL APPROACH Celastrol was tested on human NADPH oxidases (NOXs) using a panel of experiments: production of reactive oxygen species and oxygen consumption by NOX enzymes, xanthine oxidase activity, cell toxicity, phagocyte oxidase subunit translocation, and binding to cytosolic subunits of NOX enzymes. The effect of celastrol was compared with diphenyleneiodonium, an established inhibitor of flavoproteins. KEY RESULTS Low concentrations of celastrol completely inhibited NOX1, NOX2, NOX4 and NOX5 within minutes with concentration–response curves exhibiting higher Hill coefficients and lower IC50 values for NOX1 and NOX2 compared with NOX4 and NOX5, suggesting differences in their mode of action. In a cell‐free system, celastrol had an IC50 of 1.24 and 8.4 µM for NOX2 and NOX5, respectively. Cytotoxicity, oxidant scavenging, and inhibition of p47phox translocation could not account for NOX inhibition. Celastrol bound to a recombinant p47phox and disrupted the binding of the proline rich region of p22phox to the tandem SH3 domain of p47phox and NOXO1, the cytosolic subunits of NOX2 and NOX1, respectively. CONCLUSIONS AND IMPLICATIONS These results demonstrate that celastrol is a potent inhibitor of NOX enzymes in general with increased potency against NOX1 and NOX2. Furthermore, inhibition of NOX1 and NOX2 was mediated via a novel mode of action, namely inhibition of a functional association between cytosolic subunits and the membrane flavocytochrome.
doi_str_mv 10.1111/j.1476-5381.2011.01439.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3315952481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5359-a6d030b81f363ca9848fb7113ac6dcb50a02977d3f17df9382c81b9dba5a08793</originalsourceid><addsrcrecordid>eNqNkV-P1CAUxYnRuOPqVzAkPug-tHJLKfCgybj-GZPJ7sZo4huhhTpM2rJCuzvz7aXOOtF98r5AuL9zgHsQwkBySPV6m0PJq4xRAXlBAHICJZX57gFaHBsP0YIQwjMAIU7Qkxi3JFGcs8fopACWVGWxQF8ulu-vVtjvnNHR4lcXl9_PsIu-9aGPWAeL3bBxtRutwfUeN7bTcQy-w7du3GCNzaQ73HtjsW-xbkbnh6foUau7aJ_drafo28cPX89X2fry0-fz5TprGGUy05UhlNQCWlrRRktRirbmAFQ3lWlqRjQpJOeGtsBNK6koGgG1NLVmmggu6Sl6e_C9nuremsYOY9Cdug6u12GvvHbq387gNuqHv1E0TSRVMjg7GGzuyVbLtZrPSEEpY5zeQGJf3l0W_M_JxlH1LqZpdHqwfopKSC6gIgVJ5It75NZPYUiTUMAKwWRZFbOfOFBN8DEG2x4fAETNGautmqNUc5Rqzlj9zljtkvT53_8-Cv-EmoA3B-DWdXb_38bq3dVq3tFfCWay8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528594621</pqid></control><display><type>article</type><title>NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Jaquet, Vincent ; Marcoux, Julien ; Forest, Eric ; Leidal, Kevin G ; McCormick, Sally ; Westermaier, Yvonne ; Perozzo, Remo ; Plastre, Olivier ; Fioraso‐Cartier, Laetitia ; Diebold, Becky ; Scapozza, Leonardo ; Nauseef, William M ; Fieschi, Franck ; Krause, Karl‐Heinz ; Bedard, Karen</creator><creatorcontrib>Jaquet, Vincent ; Marcoux, Julien ; Forest, Eric ; Leidal, Kevin G ; McCormick, Sally ; Westermaier, Yvonne ; Perozzo, Remo ; Plastre, Olivier ; Fioraso‐Cartier, Laetitia ; Diebold, Becky ; Scapozza, Leonardo ; Nauseef, William M ; Fieschi, Franck ; Krause, Karl‐Heinz ; Bedard, Karen</creatorcontrib><description>BACKGROUND Celastrol is one of several bioactive compounds extracted from the medicinal plant Tripterygium wilfordii. Celastrol is used to treat inflammatory conditions, and shows benefits in models of neurodegenerative disease, cancer and arthritis, although its mechanism of action is incompletely understood. EXPERIMENTAL APPROACH Celastrol was tested on human NADPH oxidases (NOXs) using a panel of experiments: production of reactive oxygen species and oxygen consumption by NOX enzymes, xanthine oxidase activity, cell toxicity, phagocyte oxidase subunit translocation, and binding to cytosolic subunits of NOX enzymes. The effect of celastrol was compared with diphenyleneiodonium, an established inhibitor of flavoproteins. KEY RESULTS Low concentrations of celastrol completely inhibited NOX1, NOX2, NOX4 and NOX5 within minutes with concentration–response curves exhibiting higher Hill coefficients and lower IC50 values for NOX1 and NOX2 compared with NOX4 and NOX5, suggesting differences in their mode of action. In a cell‐free system, celastrol had an IC50 of 1.24 and 8.4 µM for NOX2 and NOX5, respectively. Cytotoxicity, oxidant scavenging, and inhibition of p47phox translocation could not account for NOX inhibition. Celastrol bound to a recombinant p47phox and disrupted the binding of the proline rich region of p22phox to the tandem SH3 domain of p47phox and NOXO1, the cytosolic subunits of NOX2 and NOX1, respectively. CONCLUSIONS AND IMPLICATIONS These results demonstrate that celastrol is a potent inhibitor of NOX enzymes in general with increased potency against NOX1 and NOX2. Furthermore, inhibition of NOX1 and NOX2 was mediated via a novel mode of action, namely inhibition of a functional association between cytosolic subunits and the membrane flavocytochrome.</description><identifier>ISSN: 0007-1188</identifier><identifier>ISSN: 1476-5381</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1111/j.1476-5381.2011.01439.x</identifier><identifier>PMID: 21501142</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Biochemistry, Molecular Biology ; celastrol ; Cell Line ; Cell Line, Transformed ; CHO Cells ; Cricetinae ; Cytosol - drug effects ; Cytosol - metabolism ; HEK293 Cells ; Humans ; Hydrogen Peroxide - metabolism ; Life Sciences ; NADPH oxidase ; NADPH Oxidases - antagonists &amp; inhibitors ; NADPH Oxidases - metabolism ; Neutrophils - drug effects ; Neutrophils - metabolism ; NOX inhibitor ; Onium Compounds - pharmacology ; Oxidoreductases - metabolism ; Oxygen - metabolism ; Pentacyclic Triterpenes ; Protein Binding - drug effects ; Protein Isoforms ; Protein Transport - drug effects ; reactive oxygen species ; Reactive Oxygen Species - antagonists &amp; inhibitors ; Reactive Oxygen Species - metabolism ; SH3 domain ; src Homology Domains - drug effects ; Superoxides - metabolism ; Themed Section: Drug Discovery ; Tripterygium wilfordii Hook F ; Triterpenes - pharmacology</subject><ispartof>British journal of pharmacology, 2011-09, Vol.164 (2b), p.507-520</ispartof><rights>2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society</rights><rights>2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>British Journal of Pharmacology © 2011 The British Pharmacological Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5359-a6d030b81f363ca9848fb7113ac6dcb50a02977d3f17df9382c81b9dba5a08793</citedby><cites>FETCH-LOGICAL-c5359-a6d030b81f363ca9848fb7113ac6dcb50a02977d3f17df9382c81b9dba5a08793</cites><orcidid>0000-0001-7321-7436 ; 0000-0003-1194-8107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188888/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188888/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21501142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02335573$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaquet, Vincent</creatorcontrib><creatorcontrib>Marcoux, Julien</creatorcontrib><creatorcontrib>Forest, Eric</creatorcontrib><creatorcontrib>Leidal, Kevin G</creatorcontrib><creatorcontrib>McCormick, Sally</creatorcontrib><creatorcontrib>Westermaier, Yvonne</creatorcontrib><creatorcontrib>Perozzo, Remo</creatorcontrib><creatorcontrib>Plastre, Olivier</creatorcontrib><creatorcontrib>Fioraso‐Cartier, Laetitia</creatorcontrib><creatorcontrib>Diebold, Becky</creatorcontrib><creatorcontrib>Scapozza, Leonardo</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><creatorcontrib>Fieschi, Franck</creatorcontrib><creatorcontrib>Krause, Karl‐Heinz</creatorcontrib><creatorcontrib>Bedard, Karen</creatorcontrib><title>NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>BACKGROUND Celastrol is one of several bioactive compounds extracted from the medicinal plant Tripterygium wilfordii. Celastrol is used to treat inflammatory conditions, and shows benefits in models of neurodegenerative disease, cancer and arthritis, although its mechanism of action is incompletely understood. EXPERIMENTAL APPROACH Celastrol was tested on human NADPH oxidases (NOXs) using a panel of experiments: production of reactive oxygen species and oxygen consumption by NOX enzymes, xanthine oxidase activity, cell toxicity, phagocyte oxidase subunit translocation, and binding to cytosolic subunits of NOX enzymes. The effect of celastrol was compared with diphenyleneiodonium, an established inhibitor of flavoproteins. KEY RESULTS Low concentrations of celastrol completely inhibited NOX1, NOX2, NOX4 and NOX5 within minutes with concentration–response curves exhibiting higher Hill coefficients and lower IC50 values for NOX1 and NOX2 compared with NOX4 and NOX5, suggesting differences in their mode of action. In a cell‐free system, celastrol had an IC50 of 1.24 and 8.4 µM for NOX2 and NOX5, respectively. Cytotoxicity, oxidant scavenging, and inhibition of p47phox translocation could not account for NOX inhibition. Celastrol bound to a recombinant p47phox and disrupted the binding of the proline rich region of p22phox to the tandem SH3 domain of p47phox and NOXO1, the cytosolic subunits of NOX2 and NOX1, respectively. CONCLUSIONS AND IMPLICATIONS These results demonstrate that celastrol is a potent inhibitor of NOX enzymes in general with increased potency against NOX1 and NOX2. Furthermore, inhibition of NOX1 and NOX2 was mediated via a novel mode of action, namely inhibition of a functional association between cytosolic subunits and the membrane flavocytochrome.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>celastrol</subject><subject>Cell Line</subject><subject>Cell Line, Transformed</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cytosol - drug effects</subject><subject>Cytosol - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Life Sciences</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - metabolism</subject><subject>NOX inhibitor</subject><subject>Onium Compounds - pharmacology</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Pentacyclic Triterpenes</subject><subject>Protein Binding - drug effects</subject><subject>Protein Isoforms</subject><subject>Protein Transport - drug effects</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - antagonists &amp; inhibitors</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>SH3 domain</subject><subject>src Homology Domains - drug effects</subject><subject>Superoxides - metabolism</subject><subject>Themed Section: Drug Discovery</subject><subject>Tripterygium wilfordii Hook F</subject><subject>Triterpenes - pharmacology</subject><issn>0007-1188</issn><issn>1476-5381</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV-P1CAUxYnRuOPqVzAkPug-tHJLKfCgybj-GZPJ7sZo4huhhTpM2rJCuzvz7aXOOtF98r5AuL9zgHsQwkBySPV6m0PJq4xRAXlBAHICJZX57gFaHBsP0YIQwjMAIU7Qkxi3JFGcs8fopACWVGWxQF8ulu-vVtjvnNHR4lcXl9_PsIu-9aGPWAeL3bBxtRutwfUeN7bTcQy-w7du3GCNzaQ73HtjsW-xbkbnh6foUau7aJ_drafo28cPX89X2fry0-fz5TprGGUy05UhlNQCWlrRRktRirbmAFQ3lWlqRjQpJOeGtsBNK6koGgG1NLVmmggu6Sl6e_C9nuremsYOY9Cdug6u12GvvHbq387gNuqHv1E0TSRVMjg7GGzuyVbLtZrPSEEpY5zeQGJf3l0W_M_JxlH1LqZpdHqwfopKSC6gIgVJ5It75NZPYUiTUMAKwWRZFbOfOFBN8DEG2x4fAETNGautmqNUc5Rqzlj9zljtkvT53_8-Cv-EmoA3B-DWdXb_38bq3dVq3tFfCWay8A</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Jaquet, Vincent</creator><creator>Marcoux, Julien</creator><creator>Forest, Eric</creator><creator>Leidal, Kevin G</creator><creator>McCormick, Sally</creator><creator>Westermaier, Yvonne</creator><creator>Perozzo, Remo</creator><creator>Plastre, Olivier</creator><creator>Fioraso‐Cartier, Laetitia</creator><creator>Diebold, Becky</creator><creator>Scapozza, Leonardo</creator><creator>Nauseef, William M</creator><creator>Fieschi, Franck</creator><creator>Krause, Karl‐Heinz</creator><creator>Bedard, Karen</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7321-7436</orcidid><orcidid>https://orcid.org/0000-0003-1194-8107</orcidid></search><sort><creationdate>201109</creationdate><title>NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action</title><author>Jaquet, Vincent ; Marcoux, Julien ; Forest, Eric ; Leidal, Kevin G ; McCormick, Sally ; Westermaier, Yvonne ; Perozzo, Remo ; Plastre, Olivier ; Fioraso‐Cartier, Laetitia ; Diebold, Becky ; Scapozza, Leonardo ; Nauseef, William M ; Fieschi, Franck ; Krause, Karl‐Heinz ; Bedard, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5359-a6d030b81f363ca9848fb7113ac6dcb50a02977d3f17df9382c81b9dba5a08793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>celastrol</topic><topic>Cell Line</topic><topic>Cell Line, Transformed</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cytosol - drug effects</topic><topic>Cytosol - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Life Sciences</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - metabolism</topic><topic>NOX inhibitor</topic><topic>Onium Compounds - pharmacology</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Pentacyclic Triterpenes</topic><topic>Protein Binding - drug effects</topic><topic>Protein Isoforms</topic><topic>Protein Transport - drug effects</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - antagonists &amp; inhibitors</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>SH3 domain</topic><topic>src Homology Domains - drug effects</topic><topic>Superoxides - metabolism</topic><topic>Themed Section: Drug Discovery</topic><topic>Tripterygium wilfordii Hook F</topic><topic>Triterpenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaquet, Vincent</creatorcontrib><creatorcontrib>Marcoux, Julien</creatorcontrib><creatorcontrib>Forest, Eric</creatorcontrib><creatorcontrib>Leidal, Kevin G</creatorcontrib><creatorcontrib>McCormick, Sally</creatorcontrib><creatorcontrib>Westermaier, Yvonne</creatorcontrib><creatorcontrib>Perozzo, Remo</creatorcontrib><creatorcontrib>Plastre, Olivier</creatorcontrib><creatorcontrib>Fioraso‐Cartier, Laetitia</creatorcontrib><creatorcontrib>Diebold, Becky</creatorcontrib><creatorcontrib>Scapozza, Leonardo</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><creatorcontrib>Fieschi, Franck</creatorcontrib><creatorcontrib>Krause, Karl‐Heinz</creatorcontrib><creatorcontrib>Bedard, Karen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaquet, Vincent</au><au>Marcoux, Julien</au><au>Forest, Eric</au><au>Leidal, Kevin G</au><au>McCormick, Sally</au><au>Westermaier, Yvonne</au><au>Perozzo, Remo</au><au>Plastre, Olivier</au><au>Fioraso‐Cartier, Laetitia</au><au>Diebold, Becky</au><au>Scapozza, Leonardo</au><au>Nauseef, William M</au><au>Fieschi, Franck</au><au>Krause, Karl‐Heinz</au><au>Bedard, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2011-09</date><risdate>2011</risdate><volume>164</volume><issue>2b</issue><spage>507</spage><epage>520</epage><pages>507-520</pages><issn>0007-1188</issn><issn>1476-5381</issn><eissn>1476-5381</eissn><abstract>BACKGROUND Celastrol is one of several bioactive compounds extracted from the medicinal plant Tripterygium wilfordii. Celastrol is used to treat inflammatory conditions, and shows benefits in models of neurodegenerative disease, cancer and arthritis, although its mechanism of action is incompletely understood. EXPERIMENTAL APPROACH Celastrol was tested on human NADPH oxidases (NOXs) using a panel of experiments: production of reactive oxygen species and oxygen consumption by NOX enzymes, xanthine oxidase activity, cell toxicity, phagocyte oxidase subunit translocation, and binding to cytosolic subunits of NOX enzymes. The effect of celastrol was compared with diphenyleneiodonium, an established inhibitor of flavoproteins. KEY RESULTS Low concentrations of celastrol completely inhibited NOX1, NOX2, NOX4 and NOX5 within minutes with concentration–response curves exhibiting higher Hill coefficients and lower IC50 values for NOX1 and NOX2 compared with NOX4 and NOX5, suggesting differences in their mode of action. In a cell‐free system, celastrol had an IC50 of 1.24 and 8.4 µM for NOX2 and NOX5, respectively. Cytotoxicity, oxidant scavenging, and inhibition of p47phox translocation could not account for NOX inhibition. Celastrol bound to a recombinant p47phox and disrupted the binding of the proline rich region of p22phox to the tandem SH3 domain of p47phox and NOXO1, the cytosolic subunits of NOX2 and NOX1, respectively. CONCLUSIONS AND IMPLICATIONS These results demonstrate that celastrol is a potent inhibitor of NOX enzymes in general with increased potency against NOX1 and NOX2. Furthermore, inhibition of NOX1 and NOX2 was mediated via a novel mode of action, namely inhibition of a functional association between cytosolic subunits and the membrane flavocytochrome.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21501142</pmid><doi>10.1111/j.1476-5381.2011.01439.x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7321-7436</orcidid><orcidid>https://orcid.org/0000-0003-1194-8107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2011-09, Vol.164 (2b), p.507-520
issn 0007-1188
1476-5381
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3188888
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Biochemistry, Molecular Biology
celastrol
Cell Line
Cell Line, Transformed
CHO Cells
Cricetinae
Cytosol - drug effects
Cytosol - metabolism
HEK293 Cells
Humans
Hydrogen Peroxide - metabolism
Life Sciences
NADPH oxidase
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - metabolism
Neutrophils - drug effects
Neutrophils - metabolism
NOX inhibitor
Onium Compounds - pharmacology
Oxidoreductases - metabolism
Oxygen - metabolism
Pentacyclic Triterpenes
Protein Binding - drug effects
Protein Isoforms
Protein Transport - drug effects
reactive oxygen species
Reactive Oxygen Species - antagonists & inhibitors
Reactive Oxygen Species - metabolism
SH3 domain
src Homology Domains - drug effects
Superoxides - metabolism
Themed Section: Drug Discovery
Tripterygium wilfordii Hook F
Triterpenes - pharmacology
title NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NADPH%20oxidase%20(NOX)%20isoforms%20are%20inhibited%20by%20celastrol%20with%20a%20dual%20mode%20of%20action&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Jaquet,%20Vincent&rft.date=2011-09&rft.volume=164&rft.issue=2b&rft.spage=507&rft.epage=520&rft.pages=507-520&rft.issn=0007-1188&rft.eissn=1476-5381&rft_id=info:doi/10.1111/j.1476-5381.2011.01439.x&rft_dat=%3Cproquest_pubme%3E3315952481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528594621&rft_id=info:pmid/21501142&rfr_iscdi=true