Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype

One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-04, Vol.98 (8), p.4478-4485
Hauptverfasser: García-Cardeña, Guillermo, Comander, Jason, Anderson, Keith R., Blackman, Brett R., Gimbrone, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4485
container_issue 8
container_start_page 4478
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator García-Cardeña, Guillermo
Comander, Jason
Anderson, Keith R.
Blackman, Brett R.
Gimbrone, Michael A.
description One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.
doi_str_mv 10.1073/pnas.071052598
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_31860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055455</jstor_id><sourcerecordid>3055455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-d3ea634ecfec982b60e9b58b075cb34d6d83de9d7ad59657624dd10b886a213d3</originalsourceid><addsrcrecordid>eNptkc2P0zAQxS0EYkvhyglQxIFbyjiOE1visuwHrLQSHIAbshx7Sl0ldrGdFfvfb6KWsiA0kufwfm_0rEfIcworCi17u_M6raClwCsuxQOyoCBp2dQSHpIFQNWWoq7qE_IkpS0ASC7gMTmhtJJNJWFBvr93YUCz0d4Z3RenJrsbnV3wRVgX33QyY69jceFtyBvs3TgUOhW6OMeMcXBe-zyDVzkVl6M3s3G68nmDPuTbHT4lj9a6T_jssJfk6-XFl7OP5fWnD1dnp9el4Zzm0jLUDavRrNFIUXUNoOy46KDlpmO1baxgFqVtteWy4W1T1dZS6IRodEWZZUvybn93N3YDWoM-R92rXXSDjrcqaKf-VrzbqB_hRjEqGpjsbw72GH6OmLIaXDLY99pjGJNqW2Bimgl8_Q-4DWOcvpxUBZRJxqZ3SVZ7yMSQUsT1MQcFNZem5tLUsbTJ8Op--j_4oaUJeHkAZuNvWQolVF234l7-_-pqPfZ9xl95Al_swW3KIR5JBpzXnLM70BS1iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201393301</pqid></control><display><type>article</type><title>Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>García-Cardeña, Guillermo ; Comander, Jason ; Anderson, Keith R. ; Blackman, Brett R. ; Gimbrone, Michael A.</creator><creatorcontrib>García-Cardeña, Guillermo ; Comander, Jason ; Anderson, Keith R. ; Blackman, Brett R. ; Gimbrone, Michael A.</creatorcontrib><description>One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.071052598</identifier><identifier>PMID: 11296290</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Biological Sciences ; Biomechanical Phenomena ; Cell cycle ; Cells, Cultured ; Cellular biology ; Complementary DNA ; Cyclins ; DNA Primers ; Endothelial cells ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiology ; Gene expression ; Gene Expression Profiling ; Gene expression regulation ; Genes ; Genetics ; Heart ; Human umbilical vein endothelial cells ; Humans ; Messenger RNA ; Molecular biology ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Phenotype ; Shear stress</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-04, Vol.98 (8), p.4478-4485</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 10, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-d3ea634ecfec982b60e9b58b075cb34d6d83de9d7ad59657624dd10b886a213d3</citedby><cites>FETCH-LOGICAL-c551t-d3ea634ecfec982b60e9b58b075cb34d6d83de9d7ad59657624dd10b886a213d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055455$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055455$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11296290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Comander, Jason</creatorcontrib><creatorcontrib>Anderson, Keith R.</creatorcontrib><creatorcontrib>Blackman, Brett R.</creatorcontrib><creatorcontrib>Gimbrone, Michael A.</creatorcontrib><title>Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.</description><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Cell cycle</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Complementary DNA</subject><subject>Cyclins</subject><subject>DNA Primers</subject><subject>Endothelial cells</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heart</subject><subject>Human umbilical vein endothelial cells</subject><subject>Humans</subject><subject>Messenger RNA</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Hybridization</subject><subject>Phenotype</subject><subject>Shear stress</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc2P0zAQxS0EYkvhyglQxIFbyjiOE1visuwHrLQSHIAbshx7Sl0ldrGdFfvfb6KWsiA0kufwfm_0rEfIcworCi17u_M6raClwCsuxQOyoCBp2dQSHpIFQNWWoq7qE_IkpS0ASC7gMTmhtJJNJWFBvr93YUCz0d4Z3RenJrsbnV3wRVgX33QyY69jceFtyBvs3TgUOhW6OMeMcXBe-zyDVzkVl6M3s3G68nmDPuTbHT4lj9a6T_jssJfk6-XFl7OP5fWnD1dnp9el4Zzm0jLUDavRrNFIUXUNoOy46KDlpmO1baxgFqVtteWy4W1T1dZS6IRodEWZZUvybn93N3YDWoM-R92rXXSDjrcqaKf-VrzbqB_hRjEqGpjsbw72GH6OmLIaXDLY99pjGJNqW2Bimgl8_Q-4DWOcvpxUBZRJxqZ3SVZ7yMSQUsT1MQcFNZem5tLUsbTJ8Op--j_4oaUJeHkAZuNvWQolVF234l7-_-pqPfZ9xl95Al_swW3KIR5JBpzXnLM70BS1iw</recordid><startdate>20010410</startdate><enddate>20010410</enddate><creator>García-Cardeña, Guillermo</creator><creator>Comander, Jason</creator><creator>Anderson, Keith R.</creator><creator>Blackman, Brett R.</creator><creator>Gimbrone, Michael A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010410</creationdate><title>Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype</title><author>García-Cardeña, Guillermo ; Comander, Jason ; Anderson, Keith R. ; Blackman, Brett R. ; Gimbrone, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-d3ea634ecfec982b60e9b58b075cb34d6d83de9d7ad59657624dd10b886a213d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Cell cycle</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Complementary DNA</topic><topic>Cyclins</topic><topic>DNA Primers</topic><topic>Endothelial cells</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heart</topic><topic>Human umbilical vein endothelial cells</topic><topic>Humans</topic><topic>Messenger RNA</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Hybridization</topic><topic>Phenotype</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Comander, Jason</creatorcontrib><creatorcontrib>Anderson, Keith R.</creatorcontrib><creatorcontrib>Blackman, Brett R.</creatorcontrib><creatorcontrib>Gimbrone, Michael A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Cardeña, Guillermo</au><au>Comander, Jason</au><au>Anderson, Keith R.</au><au>Blackman, Brett R.</au><au>Gimbrone, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-04-10</date><risdate>2001</risdate><volume>98</volume><issue>8</issue><spage>4478</spage><epage>4485</epage><pages>4478-4485</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli-a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11296290</pmid><doi>10.1073/pnas.071052598</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-04, Vol.98 (8), p.4478-4485
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_31860
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Base Sequence
Biological Sciences
Biomechanical Phenomena
Cell cycle
Cells, Cultured
Cellular biology
Complementary DNA
Cyclins
DNA Primers
Endothelial cells
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiology
Gene expression
Gene Expression Profiling
Gene expression regulation
Genes
Genetics
Heart
Human umbilical vein endothelial cells
Humans
Messenger RNA
Molecular biology
Molecular Sequence Data
Nucleic Acid Hybridization
Phenotype
Shear stress
title Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20Activation%20of%20Vascular%20Endothelium%20as%20a%20Determinant%20of%20Its%20Functional%20Phenotype&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Garc%C3%ADa-Carde%C3%B1a,%20Guillermo&rft.date=2001-04-10&rft.volume=98&rft.issue=8&rft.spage=4478&rft.epage=4485&rft.pages=4478-4485&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.071052598&rft_dat=%3Cjstor_pubme%3E3055455%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201393301&rft_id=info:pmid/11296290&rft_jstor_id=3055455&rfr_iscdi=true