Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen

Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nuclear medicine (1978) 2010-04, Vol.51 (4), p.646-653
Hauptverfasser: Wellman, Tyler J, Winkler, Tilo, Costa, Eduardo L V, Musch, Guido, Harris, R Scott, Venegas, Jose G, Melo, Marcos F Vidal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 4
container_start_page 646
container_title The Journal of nuclear medicine (1978)
container_volume 51
creator Wellman, Tyler J
Winkler, Tilo
Costa, Eduardo L V
Musch, Guido
Harris, R Scott
Venegas, Jose G
Melo, Marcos F Vidal
description Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship. Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis. sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.
doi_str_mv 10.2967/jnumed.109.067926
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3177560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733835486</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1536-9965690908559b5f9c87348ca52506356c1d75a03085ce7e6003ca0d9f565cd03</originalsourceid><addsrcrecordid>eNpVkElPwzAQhS0EgrL8AC4oN04pk7gzji9IqGKTynIo58h1nNQotYOdIPHvScUiOI1m5ul7M4-x0wymuSRx8eqGjammGcgpkJA57bBJhhxTJBK7bAIZZSki4AE7jPEVAKgoin12kEPOBXCasObBqDgEszGuT3ydBNNY71SbxM5oW1udtINrknffjlaJXivXmGSIdpwFEzsbVO_DR9qo3lTJ8_Vyy7Burdqxzfhj6mwffGPcMdurVRvNyXc9Yi8318v5Xbp4ur2fXy3SbjycUikJSYKEAlGusJa6EHxWaIU5AnEknVUCFfBRoI0wBMC1gkrWSKgr4Efs8ovbDasxGz2-FVRbdsFuVPgovbLl_42z67Lx7yXPhEDaAs6_AcG_DSb25cZGbdpWOeOHWArOC46zgkbl2V-rX4-fcPkn9C19_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733835486</pqid></control><display><type>article</type><title>Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wellman, Tyler J ; Winkler, Tilo ; Costa, Eduardo L V ; Musch, Guido ; Harris, R Scott ; Venegas, Jose G ; Melo, Marcos F Vidal</creator><creatorcontrib>Wellman, Tyler J ; Winkler, Tilo ; Costa, Eduardo L V ; Musch, Guido ; Harris, R Scott ; Venegas, Jose G ; Melo, Marcos F Vidal</creatorcontrib><description>Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship. Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis. sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.</description><identifier>ISSN: 0161-5505</identifier><identifier>EISSN: 1535-5667</identifier><identifier>DOI: 10.2967/jnumed.109.067926</identifier><identifier>PMID: 20237036</identifier><language>eng</language><publisher>United States</publisher><subject>Administration, Inhalation ; Animals ; Exhalation ; Lung - diagnostic imaging ; Lung - physiology ; Lung Volume Measurements - methods ; Nitrogen Radioisotopes - administration &amp; dosage ; Positron-Emission Tomography ; Pulmonary Ventilation ; Reproducibility of Results ; Respiratory-Gated Imaging Techniques ; Sheep</subject><ispartof>The Journal of nuclear medicine (1978), 2010-04, Vol.51 (4), p.646-653</ispartof><rights>COPYRIGHT © 2010 by the Society of Nuclear Medicine, Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wellman, Tyler J</creatorcontrib><creatorcontrib>Winkler, Tilo</creatorcontrib><creatorcontrib>Costa, Eduardo L V</creatorcontrib><creatorcontrib>Musch, Guido</creatorcontrib><creatorcontrib>Harris, R Scott</creatorcontrib><creatorcontrib>Venegas, Jose G</creatorcontrib><creatorcontrib>Melo, Marcos F Vidal</creatorcontrib><title>Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen</title><title>The Journal of nuclear medicine (1978)</title><addtitle>J Nucl Med</addtitle><description>Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship. Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis. sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.</description><subject>Administration, Inhalation</subject><subject>Animals</subject><subject>Exhalation</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - physiology</subject><subject>Lung Volume Measurements - methods</subject><subject>Nitrogen Radioisotopes - administration &amp; dosage</subject><subject>Positron-Emission Tomography</subject><subject>Pulmonary Ventilation</subject><subject>Reproducibility of Results</subject><subject>Respiratory-Gated Imaging Techniques</subject><subject>Sheep</subject><issn>0161-5505</issn><issn>1535-5667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkElPwzAQhS0EgrL8AC4oN04pk7gzji9IqGKTynIo58h1nNQotYOdIPHvScUiOI1m5ul7M4-x0wymuSRx8eqGjammGcgpkJA57bBJhhxTJBK7bAIZZSki4AE7jPEVAKgoin12kEPOBXCasObBqDgEszGuT3ydBNNY71SbxM5oW1udtINrknffjlaJXivXmGSIdpwFEzsbVO_DR9qo3lTJ8_Vyy7Burdqxzfhj6mwffGPcMdurVRvNyXc9Yi8318v5Xbp4ur2fXy3SbjycUikJSYKEAlGusJa6EHxWaIU5AnEknVUCFfBRoI0wBMC1gkrWSKgr4Efs8ovbDasxGz2-FVRbdsFuVPgovbLl_42z67Lx7yXPhEDaAs6_AcG_DSb25cZGbdpWOeOHWArOC46zgkbl2V-rX4-fcPkn9C19_w</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Wellman, Tyler J</creator><creator>Winkler, Tilo</creator><creator>Costa, Eduardo L V</creator><creator>Musch, Guido</creator><creator>Harris, R Scott</creator><creator>Venegas, Jose G</creator><creator>Melo, Marcos F Vidal</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201004</creationdate><title>Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen</title><author>Wellman, Tyler J ; Winkler, Tilo ; Costa, Eduardo L V ; Musch, Guido ; Harris, R Scott ; Venegas, Jose G ; Melo, Marcos F Vidal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1536-9965690908559b5f9c87348ca52506356c1d75a03085ce7e6003ca0d9f565cd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Administration, Inhalation</topic><topic>Animals</topic><topic>Exhalation</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - physiology</topic><topic>Lung Volume Measurements - methods</topic><topic>Nitrogen Radioisotopes - administration &amp; dosage</topic><topic>Positron-Emission Tomography</topic><topic>Pulmonary Ventilation</topic><topic>Reproducibility of Results</topic><topic>Respiratory-Gated Imaging Techniques</topic><topic>Sheep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wellman, Tyler J</creatorcontrib><creatorcontrib>Winkler, Tilo</creatorcontrib><creatorcontrib>Costa, Eduardo L V</creatorcontrib><creatorcontrib>Musch, Guido</creatorcontrib><creatorcontrib>Harris, R Scott</creatorcontrib><creatorcontrib>Venegas, Jose G</creatorcontrib><creatorcontrib>Melo, Marcos F Vidal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of nuclear medicine (1978)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wellman, Tyler J</au><au>Winkler, Tilo</au><au>Costa, Eduardo L V</au><au>Musch, Guido</au><au>Harris, R Scott</au><au>Venegas, Jose G</au><au>Melo, Marcos F Vidal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen</atitle><jtitle>The Journal of nuclear medicine (1978)</jtitle><addtitle>J Nucl Med</addtitle><date>2010-04</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>646</spage><epage>653</epage><pages>646-653</pages><issn>0161-5505</issn><eissn>1535-5667</eissn><abstract>Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship. Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis. sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.</abstract><cop>United States</cop><pmid>20237036</pmid><doi>10.2967/jnumed.109.067926</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-5505
ispartof The Journal of nuclear medicine (1978), 2010-04, Vol.51 (4), p.646-653
issn 0161-5505
1535-5667
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3177560
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Administration, Inhalation
Animals
Exhalation
Lung - diagnostic imaging
Lung - physiology
Lung Volume Measurements - methods
Nitrogen Radioisotopes - administration & dosage
Positron-Emission Tomography
Pulmonary Ventilation
Reproducibility of Results
Respiratory-Gated Imaging Techniques
Sheep
title Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20regional%20specific%20lung%20volume%20change%20using%20respiratory-gated%20PET%20of%20inhaled%2013N-nitrogen&rft.jtitle=The%20Journal%20of%20nuclear%20medicine%20(1978)&rft.au=Wellman,%20Tyler%20J&rft.date=2010-04&rft.volume=51&rft.issue=4&rft.spage=646&rft.epage=653&rft.pages=646-653&rft.issn=0161-5505&rft.eissn=1535-5667&rft_id=info:doi/10.2967/jnumed.109.067926&rft_dat=%3Cproquest_pubme%3E733835486%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733835486&rft_id=info:pmid/20237036&rfr_iscdi=true