Predicting the functional impact of protein mutations: application to cancer genomics

As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conserva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-09, Vol.39 (17), p.e118-e118
Hauptverfasser: Reva, Boris, Antipin, Yevgeniy, Sander, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e118
container_issue 17
container_start_page e118
container_title Nucleic acids research
container_volume 39
creator Reva, Boris
Antipin, Yevgeniy
Sander, Chris
description As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations ('drivers'). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.
doi_str_mv 10.1093/nar/gkr407
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3177186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr407</oup_id><sourcerecordid>893979943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-54f2f0a1bafda6778a68dc0552d54f6f8938777c4ba61006cf1dab4185a0eb643</originalsourceid><addsrcrecordid>eNqFkUFLHTEUhYNY9NV24w8o2YhQGE1mMkmmC0GktYJQF7oOdzLJMzqTTJOM4L839qnUTbu6HM7H4d57ENqn5IiSrjn2EI_X95ERsYVWtOF1xTpeb6MVaUhbUcLkLvqY0h0hlNGW7aDdmopakI6s0M1VNIPT2fk1zrcG28UXETyM2E0z6IyDxXMM2TiPpyXDs5m-YZjn0ek_CueANXhtIl4bHyan0yf0wcKYzOeXuYdufny_PvtZXf46vzg7vax0y3iuWmZrS4D2YAfgQkjgctCkbeuhWNzKrpFCCM164JQQri0doGdUtkBMz1mzh042ufPST2bQxucIo5qjmyA-qgBOvXe8u1Xr8KAaKgSVvAQcvgTE8HsxKavJJW3GEbwJS1JdzaUsj2L_Jcuuneg61hTy64bUMaQUjX3bhxL1XJgqhalNYQX-8vcFb-hrQwU42ABhmf8V9ATp-KEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893979943</pqid></control><display><type>article</type><title>Predicting the functional impact of protein mutations: application to cancer genomics</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Reva, Boris ; Antipin, Yevgeniy ; Sander, Chris</creator><creatorcontrib>Reva, Boris ; Antipin, Yevgeniy ; Sander, Chris</creatorcontrib><description>As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations ('drivers'). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr407</identifier><identifier>PMID: 21727090</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Databases, Genetic ; Genes, Neoplasm ; Genes, p53 ; Genomics - methods ; Humans ; Methods Online ; Mutation, Missense ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; Neoplasms - genetics ; Polymorphism, Genetic ; Sequence Alignment ; Sequence Analysis, Protein</subject><ispartof>Nucleic acids research, 2011-09, Vol.39 (17), p.e118-e118</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-54f2f0a1bafda6778a68dc0552d54f6f8938777c4ba61006cf1dab4185a0eb643</citedby><cites>FETCH-LOGICAL-c546t-54f2f0a1bafda6778a68dc0552d54f6f8938777c4ba61006cf1dab4185a0eb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21727090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reva, Boris</creatorcontrib><creatorcontrib>Antipin, Yevgeniy</creatorcontrib><creatorcontrib>Sander, Chris</creatorcontrib><title>Predicting the functional impact of protein mutations: application to cancer genomics</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations ('drivers'). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.</description><subject>Databases, Genetic</subject><subject>Genes, Neoplasm</subject><subject>Genes, p53</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Methods Online</subject><subject>Mutation, Missense</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>Neoplasms - genetics</subject><subject>Polymorphism, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, Protein</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFLHTEUhYNY9NV24w8o2YhQGE1mMkmmC0GktYJQF7oOdzLJMzqTTJOM4L839qnUTbu6HM7H4d57ENqn5IiSrjn2EI_X95ERsYVWtOF1xTpeb6MVaUhbUcLkLvqY0h0hlNGW7aDdmopakI6s0M1VNIPT2fk1zrcG28UXETyM2E0z6IyDxXMM2TiPpyXDs5m-YZjn0ek_CueANXhtIl4bHyan0yf0wcKYzOeXuYdufny_PvtZXf46vzg7vax0y3iuWmZrS4D2YAfgQkjgctCkbeuhWNzKrpFCCM164JQQri0doGdUtkBMz1mzh042ufPST2bQxucIo5qjmyA-qgBOvXe8u1Xr8KAaKgSVvAQcvgTE8HsxKavJJW3GEbwJS1JdzaUsj2L_Jcuuneg61hTy64bUMaQUjX3bhxL1XJgqhalNYQX-8vcFb-hrQwU42ABhmf8V9ATp-KEA</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Reva, Boris</creator><creator>Antipin, Yevgeniy</creator><creator>Sander, Chris</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110901</creationdate><title>Predicting the functional impact of protein mutations: application to cancer genomics</title><author>Reva, Boris ; Antipin, Yevgeniy ; Sander, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-54f2f0a1bafda6778a68dc0552d54f6f8938777c4ba61006cf1dab4185a0eb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Databases, Genetic</topic><topic>Genes, Neoplasm</topic><topic>Genes, p53</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Methods Online</topic><topic>Mutation, Missense</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>Neoplasms - genetics</topic><topic>Polymorphism, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reva, Boris</creatorcontrib><creatorcontrib>Antipin, Yevgeniy</creatorcontrib><creatorcontrib>Sander, Chris</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reva, Boris</au><au>Antipin, Yevgeniy</au><au>Sander, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the functional impact of protein mutations: application to cancer genomics</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>39</volume><issue>17</issue><spage>e118</spage><epage>e118</epage><pages>e118-e118</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations ('drivers'). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21727090</pmid><doi>10.1093/nar/gkr407</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2011-09, Vol.39 (17), p.e118-e118
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3177186
source MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; Free Full-Text Journals in Chemistry
subjects Databases, Genetic
Genes, Neoplasm
Genes, p53
Genomics - methods
Humans
Methods Online
Mutation, Missense
Neoplasm Proteins - genetics
Neoplasm Proteins - physiology
Neoplasms - genetics
Polymorphism, Genetic
Sequence Alignment
Sequence Analysis, Protein
title Predicting the functional impact of protein mutations: application to cancer genomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20functional%20impact%20of%20protein%20mutations:%20application%20to%20cancer%20genomics&rft.jtitle=Nucleic%20acids%20research&rft.au=Reva,%20Boris&rft.date=2011-09-01&rft.volume=39&rft.issue=17&rft.spage=e118&rft.epage=e118&rft.pages=e118-e118&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr407&rft_dat=%3Cproquest_pubme%3E893979943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893979943&rft_id=info:pmid/21727090&rft_oup_id=10.1093/nar/gkr407&rfr_iscdi=true