Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism

The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-09, Vol.286 (37), p.32208-32219
Hauptverfasser: Fan, Anna C.Y., Kozlov, Guennadi, Hoegl, Annabelle, Marcellus, Richard C., Wong, Michael J.H., Gehring, Kalle, Young, Jason C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32219
container_issue 37
container_start_page 32208
container_title The Journal of biological chemistry
container_volume 286
creator Fan, Anna C.Y.
Kozlov, Guennadi
Hoegl, Annabelle
Marcellus, Richard C.
Wong, Michael J.H.
Gehring, Kalle
Young, Jason C.
description The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.
doi_str_mv 10.1074/jbc.M111.280446
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3173181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820509319</els_id><sourcerecordid>889178644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-3d5ed9f5bedb2dd7cf59a1b94cb2391131e9d130951272331211c4eaabdade6e3</originalsourceid><addsrcrecordid>eNp1kcFvFCEUh4nR2LV69ma4eZotD5id4WJitmo36cZEq_FGGHi7SzMDIzA1Hv3Pnc3WRg9ygYSPH--9j5CXwJbAGnlx29nlFgCWvGVSrh6RBbBWVKKGb4_JgjEOleJ1e0ae5XzL5iUVPCVnHJoGGsUW5NcmFEzGFh8D7bD8QAy0HJBeTYMJdOtLtIcYXPKmp5thjKnQT2hxLDFlehMHzqgJ7nhqGPWBfvUlRfp52u8xl0wNXR_MiCkGpJc-j72xOGAodIv2YILPw3PyZGf6jC_u93Py5f27m_VVdf3xw2b99rqyUvJSCVejU7u6Q9dx5xq7q5WBTknbcaEABKByIJiqgTdcCOAAVqIxnTMOVyjOyZtT7jh1Azo7F5FMr8fkB5N-6mi8_vcm-IPexzstoBHQwhzw-j4gxe_T3J0efLbY9yZgnLJuWwVNu5JyJi9OpE0x54S7h1-A6aM3PXvTR2_65G1-8erv4h74P6JmQJ0AnEd05zHpbD0Gi84ntEW76P8b_hsgZKpf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889178644</pqid></control><display><type>article</type><title>Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Fan, Anna C.Y. ; Kozlov, Guennadi ; Hoegl, Annabelle ; Marcellus, Richard C. ; Wong, Michael J.H. ; Gehring, Kalle ; Young, Jason C.</creator><creatorcontrib>Fan, Anna C.Y. ; Kozlov, Guennadi ; Hoegl, Annabelle ; Marcellus, Richard C. ; Wong, Michael J.H. ; Gehring, Kalle ; Young, Jason C.</creatorcontrib><description>The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.280446</identifier><identifier>PMID: 21771790</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Biophysics ; Chaperone Chaperonin ; Heat Shock Protein ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HeLa Cells ; Humans ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mitochondria ; Mitochondrial Membrane Transport Proteins - chemistry ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - chemistry ; Mitochondrial Membranes - metabolism ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Peptides - pharmacology ; Protein Binding - drug effects ; Protein Binding - physiology ; Protein Complexes ; Protein Precursors - chemistry ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Protein Structure and Folding ; Protein Structure, Tertiary ; Protein Targeting ; Protein Transport - drug effects ; Protein Transport - physiology ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Surface Plasmon Resonance</subject><ispartof>The Journal of biological chemistry, 2011-09, Vol.286 (37), p.32208-32219</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-3d5ed9f5bedb2dd7cf59a1b94cb2391131e9d130951272331211c4eaabdade6e3</citedby><cites>FETCH-LOGICAL-c442t-3d5ed9f5bedb2dd7cf59a1b94cb2391131e9d130951272331211c4eaabdade6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173181/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173181/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21771790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Anna C.Y.</creatorcontrib><creatorcontrib>Kozlov, Guennadi</creatorcontrib><creatorcontrib>Hoegl, Annabelle</creatorcontrib><creatorcontrib>Marcellus, Richard C.</creatorcontrib><creatorcontrib>Wong, Michael J.H.</creatorcontrib><creatorcontrib>Gehring, Kalle</creatorcontrib><creatorcontrib>Young, Jason C.</creatorcontrib><title>Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.</description><subject>Amino Acid Motifs</subject><subject>Biophysics</subject><subject>Chaperone Chaperonin</subject><subject>Heat Shock Protein</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial Membrane Transport Proteins - chemistry</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - chemistry</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Mutation</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptides - pharmacology</subject><subject>Protein Binding - drug effects</subject><subject>Protein Binding - physiology</subject><subject>Protein Complexes</subject><subject>Protein Precursors - chemistry</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Targeting</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - physiology</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Surface Plasmon Resonance</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFvFCEUh4nR2LV69ma4eZotD5id4WJitmo36cZEq_FGGHi7SzMDIzA1Hv3Pnc3WRg9ygYSPH--9j5CXwJbAGnlx29nlFgCWvGVSrh6RBbBWVKKGb4_JgjEOleJ1e0ae5XzL5iUVPCVnHJoGGsUW5NcmFEzGFh8D7bD8QAy0HJBeTYMJdOtLtIcYXPKmp5thjKnQT2hxLDFlehMHzqgJ7nhqGPWBfvUlRfp52u8xl0wNXR_MiCkGpJc-j72xOGAodIv2YILPw3PyZGf6jC_u93Py5f27m_VVdf3xw2b99rqyUvJSCVejU7u6Q9dx5xq7q5WBTknbcaEABKByIJiqgTdcCOAAVqIxnTMOVyjOyZtT7jh1Azo7F5FMr8fkB5N-6mi8_vcm-IPexzstoBHQwhzw-j4gxe_T3J0efLbY9yZgnLJuWwVNu5JyJi9OpE0x54S7h1-A6aM3PXvTR2_65G1-8erv4h74P6JmQJ0AnEd05zHpbD0Gi84ntEW76P8b_hsgZKpf</recordid><startdate>20110916</startdate><enddate>20110916</enddate><creator>Fan, Anna C.Y.</creator><creator>Kozlov, Guennadi</creator><creator>Hoegl, Annabelle</creator><creator>Marcellus, Richard C.</creator><creator>Wong, Michael J.H.</creator><creator>Gehring, Kalle</creator><creator>Young, Jason C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110916</creationdate><title>Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism</title><author>Fan, Anna C.Y. ; Kozlov, Guennadi ; Hoegl, Annabelle ; Marcellus, Richard C. ; Wong, Michael J.H. ; Gehring, Kalle ; Young, Jason C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-3d5ed9f5bedb2dd7cf59a1b94cb2391131e9d130951272331211c4eaabdade6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Motifs</topic><topic>Biophysics</topic><topic>Chaperone Chaperonin</topic><topic>Heat Shock Protein</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial Membrane Transport Proteins - chemistry</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - chemistry</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Mutation</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptides - pharmacology</topic><topic>Protein Binding - drug effects</topic><topic>Protein Binding - physiology</topic><topic>Protein Complexes</topic><topic>Protein Precursors - chemistry</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Targeting</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - physiology</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Anna C.Y.</creatorcontrib><creatorcontrib>Kozlov, Guennadi</creatorcontrib><creatorcontrib>Hoegl, Annabelle</creatorcontrib><creatorcontrib>Marcellus, Richard C.</creatorcontrib><creatorcontrib>Wong, Michael J.H.</creatorcontrib><creatorcontrib>Gehring, Kalle</creatorcontrib><creatorcontrib>Young, Jason C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Anna C.Y.</au><au>Kozlov, Guennadi</au><au>Hoegl, Annabelle</au><au>Marcellus, Richard C.</au><au>Wong, Michael J.H.</au><au>Gehring, Kalle</au><au>Young, Jason C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-09-16</date><risdate>2011</risdate><volume>286</volume><issue>37</issue><spage>32208</spage><epage>32219</epage><pages>32208-32219</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The mitochondrial import receptor Tom70 contains a tetratricopeptide repeat (TPR) clamp domain, which allows the receptor to interact with the molecular chaperones, Hsc70/Hsp70 and Hsp90. Preprotein recognition by Tom70, a critical step to initiate import, is dependent on these cytosolic chaperones. Preproteins are subsequently released from the receptor for translocation across the outer membrane, yet the mechanism of this step is unknown. Here, we report that Tom20 interacts with the TPR clamp domain of Tom70 via a conserved C-terminal DDVE motif. This interaction was observed by cross-linking endogenous proteins on the outer membrane of mitochondria from HeLa cells and in co-precipitation and NMR titrations with purified proteins. Upon mutation of the TPR clamp domain or deletion of the DDVE motif, the interaction was impaired. In co-precipitation experiments, the Tom20-Tom70 interaction was inhibited by C-terminal peptides from Tom20, as well as from Hsc70 and Hsp90. The Hsp90-Tom70 interaction was measured with surface plasmon resonance, and the same peptides inhibited the interaction. Thus, Tom20 competes with the chaperones for Tom70 binding. Interestingly, antibody blocking of Tom20 did not increase the efficiency of Tom70-dependent preprotein import; instead, it impaired the Tom70 import pathway in addition to the Tom20 pathway. The functional interaction between Tom20 and Tom70 may be required at a later step of the Tom70-mediated import, after chaperone docking. We suggest a novel model in which Tom20 binds Tom70 to facilitate preprotein release from the chaperones by competition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21771790</pmid><doi>10.1074/jbc.M111.280446</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-09, Vol.286 (37), p.32208-32219
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3173181
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Motifs
Biophysics
Chaperone Chaperonin
Heat Shock Protein
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
HeLa Cells
Humans
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Mitochondria
Mitochondrial Membrane Transport Proteins - chemistry
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Membranes - chemistry
Mitochondrial Membranes - metabolism
Mutation
Nuclear Magnetic Resonance, Biomolecular
Peptides - pharmacology
Protein Binding - drug effects
Protein Binding - physiology
Protein Complexes
Protein Precursors - chemistry
Protein Precursors - genetics
Protein Precursors - metabolism
Protein Structure and Folding
Protein Structure, Tertiary
Protein Targeting
Protein Transport - drug effects
Protein Transport - physiology
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Surface Plasmon Resonance
title Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20the%20Human%20Mitochondrial%20Import%20Receptors%20Tom20%20and%20Tom70%20in%20Vitro%20Suggests%20a%20Chaperone%20Displacement%20Mechanism&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Fan,%20Anna%20C.Y.&rft.date=2011-09-16&rft.volume=286&rft.issue=37&rft.spage=32208&rft.epage=32219&rft.pages=32208-32219&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.280446&rft_dat=%3Cproquest_pubme%3E889178644%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889178644&rft_id=info:pmid/21771790&rft_els_id=S0021925820509319&rfr_iscdi=true