How to Improve Postgenomic Knowledge Discovery Using Imputation

While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on bioinformatics & systems biology 2009, Vol.2009 (1), p.717136-14
Hauptverfasser: Sehgal, Muhammad Shoaib B, Gondal, Iqbal, Dooley, Laurence S, Coppel, Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 717136
container_title EURASIP journal on bioinformatics & systems biology
container_volume 2009
creator Sehgal, Muhammad Shoaib B
Gondal, Iqbal
Dooley, Laurence S
Coppel, Ross
description While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation , which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.
doi_str_mv 10.1155/2009/717136
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733453174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovlfupStd6GjSPNpuFPGNgi50HW4zt7XSJmPSjvjvzTCDDxBX98L5ONx7DiE7jB4xJuVxSmlxnLGMcbVE1pnKs5Fgki9_7UKukY0QXikVSspslayxIk15kaXr5PTGvSe9S267iXdTTB5d6Gu0rmtMcmfde4vjGpOLJpio-o_kOTS2ntFDD33j7BZZqaANuL2Ym-T56vLp_GZ0_3B9e352PzJC5P1IpbxkYEoAzFWaYp4JWZYFpapCoMCFBFPJHKscQMWFGYSyKsZgJAcwhm-Sk7nvZCg7HBu0vYdWT3zTgf_QDhr9W7HNi67dVPMYjBAsGuwvDLx7GzD0uotPYduCRTcEnfF4RIRFJPf-JWPeKhcqj-DBHDTeheCx-jqHUT2rZoYWel5NpHd_fvDNLrqIwOEcCFGyNXr96gZvY6p_-n0CYVKZAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20068468</pqid></control><display><type>article</type><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</creator><creatorcontrib>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</creatorcontrib><description>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation , which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</description><identifier>ISSN: 1687-4145</identifier><identifier>EISSN: 1687-4153</identifier><identifier>DOI: 10.1155/2009/717136</identifier><identifier>PMID: 19223972</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Signal Processing Techniques to Bioinformatics ; Biomedical Engineering and Bioengineering ; Computational Biology/Bioinformatics ; Engineering ; Genomics ; Proteomics ; Research Article ; Signal,Image and Speech Processing ; Systems Biology</subject><ispartof>EURASIP journal on bioinformatics &amp; systems biology, 2009, Vol.2009 (1), p.717136-14</ispartof><rights>Muhammad Shoaib B. Sehgal et al. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2009 Muhammad Shoaib B. Sehgal et al. 2009 Muhammad Shoaib B. Sehgal et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</citedby><cites>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19223972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehgal, Muhammad Shoaib B</creatorcontrib><creatorcontrib>Gondal, Iqbal</creatorcontrib><creatorcontrib>Dooley, Laurence S</creatorcontrib><creatorcontrib>Coppel, Ross</creatorcontrib><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><title>EURASIP journal on bioinformatics &amp; systems biology</title><addtitle>J Bioinform Sys Biology</addtitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><description>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation , which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</description><subject>Applications of Signal Processing Techniques to Bioinformatics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computational Biology/Bioinformatics</subject><subject>Engineering</subject><subject>Genomics</subject><subject>Proteomics</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Systems Biology</subject><issn>1687-4145</issn><issn>1687-4153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtLxDAUhYMovlfupStd6GjSPNpuFPGNgi50HW4zt7XSJmPSjvjvzTCDDxBX98L5ONx7DiE7jB4xJuVxSmlxnLGMcbVE1pnKs5Fgki9_7UKukY0QXikVSspslayxIk15kaXr5PTGvSe9S267iXdTTB5d6Gu0rmtMcmfde4vjGpOLJpio-o_kOTS2ntFDD33j7BZZqaANuL2Ym-T56vLp_GZ0_3B9e352PzJC5P1IpbxkYEoAzFWaYp4JWZYFpapCoMCFBFPJHKscQMWFGYSyKsZgJAcwhm-Sk7nvZCg7HBu0vYdWT3zTgf_QDhr9W7HNi67dVPMYjBAsGuwvDLx7GzD0uotPYduCRTcEnfF4RIRFJPf-JWPeKhcqj-DBHDTeheCx-jqHUT2rZoYWel5NpHd_fvDNLrqIwOEcCFGyNXr96gZvY6p_-n0CYVKZAA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Sehgal, Muhammad Shoaib B</creator><creator>Gondal, Iqbal</creator><creator>Dooley, Laurence S</creator><creator>Coppel, Ross</creator><general>Springer International Publishing</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2009</creationdate><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><author>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications of Signal Processing Techniques to Bioinformatics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computational Biology/Bioinformatics</topic><topic>Engineering</topic><topic>Genomics</topic><topic>Proteomics</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehgal, Muhammad Shoaib B</creatorcontrib><creatorcontrib>Gondal, Iqbal</creatorcontrib><creatorcontrib>Dooley, Laurence S</creatorcontrib><creatorcontrib>Coppel, Ross</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EURASIP journal on bioinformatics &amp; systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehgal, Muhammad Shoaib B</au><au>Gondal, Iqbal</au><au>Dooley, Laurence S</au><au>Coppel, Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Improve Postgenomic Knowledge Discovery Using Imputation</atitle><jtitle>EURASIP journal on bioinformatics &amp; systems biology</jtitle><stitle>J Bioinform Sys Biology</stitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><date>2009</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>717136</spage><epage>14</epage><pages>717136-14</pages><issn>1687-4145</issn><eissn>1687-4153</eissn><abstract>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation , which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>19223972</pmid><doi>10.1155/2009/717136</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4145
ispartof EURASIP journal on bioinformatics & systems biology, 2009, Vol.2009 (1), p.717136-14
issn 1687-4145
1687-4153
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171441
source PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applications of Signal Processing Techniques to Bioinformatics
Biomedical Engineering and Bioengineering
Computational Biology/Bioinformatics
Engineering
Genomics
Proteomics
Research Article
Signal,Image and Speech Processing
Systems Biology
title How to Improve Postgenomic Knowledge Discovery Using Imputation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Improve%20Postgenomic%20Knowledge%20Discovery%20Using%20Imputation&rft.jtitle=EURASIP%20journal%20on%20bioinformatics%20&%20systems%20biology&rft.au=Sehgal,%20Muhammad%20Shoaib%20B&rft.date=2009&rft.volume=2009&rft.issue=1&rft.spage=717136&rft.epage=14&rft.pages=717136-14&rft.issn=1687-4145&rft.eissn=1687-4153&rft_id=info:doi/10.1155/2009/717136&rft_dat=%3Cproquest_pubme%3E733453174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20068468&rft_id=info:pmid/19223972&rfr_iscdi=true