How to Improve Postgenomic Knowledge Discovery Using Imputation
While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values , though this assumption can exert a...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on bioinformatics & systems biology 2009, Vol.2009 (1), p.717136-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 717136 |
container_title | EURASIP journal on bioinformatics & systems biology |
container_volume | 2009 |
creator | Sehgal, Muhammad Shoaib B Gondal, Iqbal Dooley, Laurence S Coppel, Ross |
description | While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as
missing values
, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and
gene regulatory network
(GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including
local least square impute
and the recent
heuristic collateral missing value imputation
, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures. |
doi_str_mv | 10.1155/2009/717136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733453174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMovlfupStd6GjSPNpuFPGNgi50HW4zt7XSJmPSjvjvzTCDDxBX98L5ONx7DiE7jB4xJuVxSmlxnLGMcbVE1pnKs5Fgki9_7UKukY0QXikVSspslayxIk15kaXr5PTGvSe9S267iXdTTB5d6Gu0rmtMcmfde4vjGpOLJpio-o_kOTS2ntFDD33j7BZZqaANuL2Ym-T56vLp_GZ0_3B9e352PzJC5P1IpbxkYEoAzFWaYp4JWZYFpapCoMCFBFPJHKscQMWFGYSyKsZgJAcwhm-Sk7nvZCg7HBu0vYdWT3zTgf_QDhr9W7HNi67dVPMYjBAsGuwvDLx7GzD0uotPYduCRTcEnfF4RIRFJPf-JWPeKhcqj-DBHDTeheCx-jqHUT2rZoYWel5NpHd_fvDNLrqIwOEcCFGyNXr96gZvY6p_-n0CYVKZAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20068468</pqid></control><display><type>article</type><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</creator><creatorcontrib>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</creatorcontrib><description>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as
missing values
, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and
gene regulatory network
(GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including
local least square impute
and the recent
heuristic collateral missing value imputation
, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</description><identifier>ISSN: 1687-4145</identifier><identifier>EISSN: 1687-4153</identifier><identifier>DOI: 10.1155/2009/717136</identifier><identifier>PMID: 19223972</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Signal Processing Techniques to Bioinformatics ; Biomedical Engineering and Bioengineering ; Computational Biology/Bioinformatics ; Engineering ; Genomics ; Proteomics ; Research Article ; Signal,Image and Speech Processing ; Systems Biology</subject><ispartof>EURASIP journal on bioinformatics & systems biology, 2009, Vol.2009 (1), p.717136-14</ispartof><rights>Muhammad Shoaib B. Sehgal et al. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2009 Muhammad Shoaib B. Sehgal et al. 2009 Muhammad Shoaib B. Sehgal et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</citedby><cites>FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19223972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sehgal, Muhammad Shoaib B</creatorcontrib><creatorcontrib>Gondal, Iqbal</creatorcontrib><creatorcontrib>Dooley, Laurence S</creatorcontrib><creatorcontrib>Coppel, Ross</creatorcontrib><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><title>EURASIP journal on bioinformatics & systems biology</title><addtitle>J Bioinform Sys Biology</addtitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><description>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as
missing values
, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and
gene regulatory network
(GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including
local least square impute
and the recent
heuristic collateral missing value imputation
, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</description><subject>Applications of Signal Processing Techniques to Bioinformatics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computational Biology/Bioinformatics</subject><subject>Engineering</subject><subject>Genomics</subject><subject>Proteomics</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Systems Biology</subject><issn>1687-4145</issn><issn>1687-4153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtLxDAUhYMovlfupStd6GjSPNpuFPGNgi50HW4zt7XSJmPSjvjvzTCDDxBX98L5ONx7DiE7jB4xJuVxSmlxnLGMcbVE1pnKs5Fgki9_7UKukY0QXikVSspslayxIk15kaXr5PTGvSe9S267iXdTTB5d6Gu0rmtMcmfde4vjGpOLJpio-o_kOTS2ntFDD33j7BZZqaANuL2Ym-T56vLp_GZ0_3B9e352PzJC5P1IpbxkYEoAzFWaYp4JWZYFpapCoMCFBFPJHKscQMWFGYSyKsZgJAcwhm-Sk7nvZCg7HBu0vYdWT3zTgf_QDhr9W7HNi67dVPMYjBAsGuwvDLx7GzD0uotPYduCRTcEnfF4RIRFJPf-JWPeKhcqj-DBHDTeheCx-jqHUT2rZoYWel5NpHd_fvDNLrqIwOEcCFGyNXr96gZvY6p_-n0CYVKZAA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Sehgal, Muhammad Shoaib B</creator><creator>Gondal, Iqbal</creator><creator>Dooley, Laurence S</creator><creator>Coppel, Ross</creator><general>Springer International Publishing</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2009</creationdate><title>How to Improve Postgenomic Knowledge Discovery Using Imputation</title><author>Sehgal, Muhammad Shoaib B ; Gondal, Iqbal ; Dooley, Laurence S ; Coppel, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-623b1acbaae8622e8745bb9006fea0a345acf58ef8aa6f581ceabf9dac53aacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications of Signal Processing Techniques to Bioinformatics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computational Biology/Bioinformatics</topic><topic>Engineering</topic><topic>Genomics</topic><topic>Proteomics</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sehgal, Muhammad Shoaib B</creatorcontrib><creatorcontrib>Gondal, Iqbal</creatorcontrib><creatorcontrib>Dooley, Laurence S</creatorcontrib><creatorcontrib>Coppel, Ross</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EURASIP journal on bioinformatics & systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sehgal, Muhammad Shoaib B</au><au>Gondal, Iqbal</au><au>Dooley, Laurence S</au><au>Coppel, Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Improve Postgenomic Knowledge Discovery Using Imputation</atitle><jtitle>EURASIP journal on bioinformatics & systems biology</jtitle><stitle>J Bioinform Sys Biology</stitle><addtitle>EURASIP J Bioinform Syst Biol</addtitle><date>2009</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>717136</spage><epage>14</epage><pages>717136-14</pages><issn>1687-4145</issn><eissn>1687-4153</eissn><abstract>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as
missing values
, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and
gene regulatory network
(GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including
local least square impute
and the recent
heuristic collateral missing value imputation
, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>19223972</pmid><doi>10.1155/2009/717136</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4145 |
ispartof | EURASIP journal on bioinformatics & systems biology, 2009, Vol.2009 (1), p.717136-14 |
issn | 1687-4145 1687-4153 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3171441 |
source | PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Applications of Signal Processing Techniques to Bioinformatics Biomedical Engineering and Bioengineering Computational Biology/Bioinformatics Engineering Genomics Proteomics Research Article Signal,Image and Speech Processing Systems Biology |
title | How to Improve Postgenomic Knowledge Discovery Using Imputation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Improve%20Postgenomic%20Knowledge%20Discovery%20Using%20Imputation&rft.jtitle=EURASIP%20journal%20on%20bioinformatics%20&%20systems%20biology&rft.au=Sehgal,%20Muhammad%20Shoaib%20B&rft.date=2009&rft.volume=2009&rft.issue=1&rft.spage=717136&rft.epage=14&rft.pages=717136-14&rft.issn=1687-4145&rft.eissn=1687-4153&rft_id=info:doi/10.1155/2009/717136&rft_dat=%3Cproquest_pubme%3E733453174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20068468&rft_id=info:pmid/19223972&rfr_iscdi=true |